
Link for ModelSim
For Use with MATLAB ® and Simulink ®

Computation

Visualization

Programming

Simulation

User’s Guide
Version 1



How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Link for ModelSim® User’s Guide
© COPYRIGHT 2003–2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may
be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and
Documentation by or for the federal government of the United States. By accepting delivery
of the Program, the government hereby agrees that this software qualifies as "commercial"
computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part
227-7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions
of The MathWorks, Inc. Software License Agreement shall pertain to the government’s use and
disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms
or conditions. If this license fails to meet the government’s minimum needs or is inconsistent in
any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered
trademarks, and TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: August 2003 Online only New for Version 1 (Release 13SP1)
February 2004 Online only Updated for Version 1.1 (Release

13SP1)



Contents

Getting Started

1
What Is the Link for ModelSim? . . . . . . . . . . . . . . . . . . . . . . . 1–2

Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
Expected Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
The Cosimulation Environment . . . . . . . . . . . . . . . . . . . . . . . . 1–5
Modes of Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
Working with MATLAB and ModelSim . . . . . . . . . . . . . . . . . . 1–8
Working with Simulink and ModelSim . . . . . . . . . . . . . . . . . . 1–9

Installation and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11
What Are Your Environment Requirements? . . . . . . . . . . . . 1–12
Deciding on a Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 1–15
Identifying a Server in a Network

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17
Choosing TCP/IP Socket Ports . . . . . . . . . . . . . . . . . . . . . . . . 1–17
Checking Product Requirements . . . . . . . . . . . . . . . . . . . . . . 1–18
Installing Related Application Software . . . . . . . . . . . . . . . . 1–19
Installing Link for ModelSim . . . . . . . . . . . . . . . . . . . . . . . . . 1–19
Setting Up ModelSim for Use with the Link for

ModelSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–19

Getting Help with the Link for ModelSim . . . . . . . . . . . . . 1–24
Documentation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–24
Online Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–25
Demos and Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–25

Running the ModelSim and MATLAB Random Number
Generator Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–27

Running the Simulink and ModelSim Manchester Receiver
Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–32

i



MATLAB and ModelSim Tutorial

2
Setting Up Tutorial Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3

Starting the MATLAB Server . . . . . . . . . . . . . . . . . . . . . . . . . 2–4

Setting Up ModelSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6

Developing the VHDL Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8

Compiling the VHDL File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11

Loading the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12

Developing the MATLAB Function . . . . . . . . . . . . . . . . . . . 2–15

Running the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18

Shutting Down the Simulation . . . . . . . . . . . . . . . . . . . . . . . 2–21

Simulink and ModelSim Tutorial

3
Developing the VHDL Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2

Compiling the VHDL File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4

Creating the Simulink Model . . . . . . . . . . . . . . . . . . . . . . . . . 3–6

Setting Up ModelSim for Use with Simulink . . . . . . . . . . 3–12

Loading Instances of the VHDL Entity for Cosimulation with
Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13

ii Contents



Running the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14

Shutting Down the Simulation . . . . . . . . . . . . . . . . . . . . . . . 3–17

MATLAB and ModelSim Manchester Receiver
Tutorial

4
Background on Manchester Encoding . . . . . . . . . . . . . . . . . 4–3

The Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
The Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
Decoding with Inphase and Quadrature

Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6

Setting Up Tutorial Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8

Developing the Manchester Receiver VHDL
Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9
VHDL Code for the I/Q Convolver . . . . . . . . . . . . . . . . . . . . . 4–11
VHDL Code for the Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 4–14
VHDL Code for the State Counter . . . . . . . . . . . . . . . . . . . . . 4–15

Compiling the Manchester Receiver VHDL
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17

Developing the Manchester Receiver MATLAB
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19
MATLAB Function for the I/Q Convolver . . . . . . . . . . . . . . . 4–19
MATLAB Function for the Decoder . . . . . . . . . . . . . . . . . . . . 4–23
MATLAB Function for the State Counter . . . . . . . . . . . . . . . 4–26

Creating a Manchester Receiver Test Bench
Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30
Documenting the Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30
Starting the MATLAB Server from the Test

Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31
Writing Script Code for the Decoder Test . . . . . . . . . . . . . . . 4–31
Writing Script Code for the I/Q Convolver Test . . . . . . . . . . . 4–34

iii



Writing Script Code for the State Counter Test . . . . . . . . . . 4–36

Running the Manchester Receiver
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–40

Coding a Link for ModelSim MATLAB Application

5
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2

Coding VHDL Entities for MATLAB
Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
Overview of the Steps for Coding VHDL Entities . . . . . . . . . . 5–3
Choosing an Entity Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
Specifying Ports for the Entity . . . . . . . . . . . . . . . . . . . . . . . . . 5–4
Specifying Port Direction Modes . . . . . . . . . . . . . . . . . . . . . . . 5–4
Specifying Port Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
Sample VHDL Entity Definition . . . . . . . . . . . . . . . . . . . . . . . 5–5

Compiling and Debugging the VHDL Model . . . . . . . . . . . . 5–7

Coding a MATLAB Test Bench Function . . . . . . . . . . . . . . . 5–8
Overview of the Steps for Coding a MATLAB Test Bench

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8
Data Type Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–9
Naming a MATLAB Test Bench Function . . . . . . . . . . . . . . . 5–13
Setting up Expected Parameters . . . . . . . . . . . . . . . . . . . . . . 5–13
Gaining Access to and Applying Port

Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–15
Converting Data for Manipulation . . . . . . . . . . . . . . . . . . . . . 5–17
Converting Data for Return to ModelSim . . . . . . . . . . . . . . . 5–18
Sample MATLAB Test Bench Function . . . . . . . . . . . . . . . . . 5–22

Placing a MATLAB Test Bench Function on the MATLAB
Search Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–28

iv Contents



Starting and Controlling MATLAB Test Bench
Sessions

6
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3

Checking the MATLAB Server’s Link Status . . . . . . . . . . . 6–5

Starting the MATLAB Server . . . . . . . . . . . . . . . . . . . . . . . . . 6–7

Starting ModelSim for Use with MATLAB . . . . . . . . . . . . . 6–10

Loading a VHDL Entity for Verification . . . . . . . . . . . . . . 6–12

Deciding on Test Bench Scheduling Options . . . . . . . . . . 6–13

Controlling Callback Timing from a MATLAB Test Bench
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–14

Initializing the Simulator for a MATLAB Test Bench
Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–16

Applying Stimuli with the ModelSim force
Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–21

Running and Monitoring a Test Bench
Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–22

Restarting a Test Bench Session . . . . . . . . . . . . . . . . . . . . . 6–25

Stopping a Test Bench Session . . . . . . . . . . . . . . . . . . . . . . 6–26

Modeling and Verifying a VHDL Design with
Simulink

7

v



Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3

Creating a Hardware Model Design in
Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5

Handling of Signal Values Across Simulation
Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–8
How Simulink Drives Cosimulation Signals . . . . . . . . . . . . . . 7–8
Representation of Simulation Time . . . . . . . . . . . . . . . . . . . . . 7–9
Handling of Multirate Signals . . . . . . . . . . . . . . . . . . . . . . . . 7–10
Block Simulation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–11

Configuring Simulink for VHDL Models . . . . . . . . . . . . . . 7–17

Running and Testing a Hardware Model in
Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–19

Starting ModelSim for Use with Simulink . . . . . . . . . . . . 7–20

Loading a VHDL Entity for Cosimulation . . . . . . . . . . . . . 7–23

Adding the VHDL Representation of a Model Component into
a Simulink Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–24

Configuring a VHDL Cosimulation Block . . . . . . . . . . . . . 7–26
What Are Your VHDL Cosimulation Block

Requirements? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–26
Opening the Block Parameters Dialog . . . . . . . . . . . . . . . . . . 7–28
Mapping VHDL Signals to Block Ports . . . . . . . . . . . . . . . . . 7–29
Configuring the Communication Link . . . . . . . . . . . . . . . . . . 7–33
Creating Optional Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–35
Specifying Before and After Simulation Tcl

Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–37
Applying Your Block Parameters Configuration Settings and

Closing the Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–40

Running and Testing a Cosimulation Model in
Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–42

vi Contents



Using a Value Change Dump File for Design
Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–43
Generating a VCD File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–44
VCD File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–45
A Sample VCD File Application . . . . . . . . . . . . . . . . . . . . . . 7–48

MATLAB Functions — Alphabetical List

8

ModelSim Commands — Alphabetical List

9

Simulink Blocks — Alphabetical List

10

Index

vii



viii Contents



1

Getting Started

“What Is the Link for ModelSim?”
(p. 1–2)

Identifies typical applications
and expected users, lists key
product features, describes the
Link for ModelSim cosimulation
environment, and provides overviews
of how you work with the integrated
tool environment.

“Installation and Setup” (p. 1–11) Explains how to install and set up
the Link for ModelSim.

“Getting Help with the Link for
ModelSim” (p. 1–24)

Identifies and explains how to gain
access to available documentation
online help, demo, and tutorial
resources.

“Running the ModelSim and
MATLAB Random Number
Generator Demo” (p. 1–27)

Explains how to run a MATLAB and
ModelSim demo.

“Running the Simulink and
ModelSim Manchester Receiver
Demo” (p. 1–32)

Explains how to run a Simulink and
ModelSim demo.



1 Getting Started

What Is the Link for ModelSim?

The Link for ModelSim® is a cosimulation interface that integrates
MathWorks tools into the Electronic Design Automation (EDA) workflow for
field programmable gate array (FPGA) and application-specific integrated
circuit (ASIC) development. The interface provides a fast bidirectional link
between Model Technology’s hardware definition language (HDL) Simulator,
ModelSim SE/PE, and the MathWorks products MATLAB® and Simulink®

for direct hardware design verification and cosimulation. The integration of
these tools allows users to apply each product to the tasks it does best:

• ModelSim — hardware modeling in HDL and simulation

• MATLAB — numerical computing, algorithm development, and
visualization

• Simulink — simulation of system-level designs and complex models

The Link for ModelSim interface consists of MATLAB functions and ModelSim
commands for establishing the communication links between ModelSim and
the MathWorks products. In addition, a library of Simulink blocks is available
for including ModelSim HDL designs in Simulink models for cosimulation.

The following sections discuss

• “Typical Applications” on page 1–3

• “Expected Users” on page 1–4

• “Key Features ” on page 1–5

• “The Cosimulation Environment” on page 1–5

• “Modes of Communication” on page 1–8

• “Working with MATLAB and ModelSim” on page 1–8

• “Working with Simulink and ModelSim” on page 1–9

1–2



What Is the Link for ModelSim?

Typical Applications
The Link for ModelSim streamlines FPGA and ASIC development by
integrating tools available for

1 Developing specifications for hardware design reference models

2 Implementing a hardware design in HDL based on a reference model

3 Verifying the design against the reference design

The following figure shows how ModelSim and MathWorks products fit into
this hardware design scenario.

Develop specification

Implement design

1

2

ModelSim
VHDL

Verilog

Verify design

Link for ModelSim

3

MATLAB
Signal Processing Toolbox

Filter Design Toolbox
Communications Toolbox

Simulink

DSP Blockset
Fixed-Point Blockset

Communications Blockset

As the figure shows, the Link for ModelSim connects tools that traditionally
have been used discretely to accomplish specific steps in the design process.
By connecting the tools, Link for ModelSim simplifies verification by allowing
you to cosimulate the implementation and original specification directly. The
end result is significant time savings and the elimination of errors inherent to
manual comparison and inspection.

In addition to the preceding design scenario, the Link for ModelSim enables
you to use

• MATLAB or Simulink to create test signals and software test benches for
HDL code

• MATLAB or Simulink to provide a behavioral model for an HDL simulation

1–3



1 Getting Started

• MATLAB analysis and visualization capabilities for real-time insight into
an HDL implementation

• Simulink to translate legacy HDL descriptions into system-level views

Expected Users
The Link for ModelSim is for hardware engineers who design, implement,
or verify FPGAs and ASICs. A typical user might be responsible for any
or all of the following:

• Create hardware reference specifications, using MATLAB or Simulink

• Develop implementations of the specifications in HDL, using ModelSim

• Verify the implementation by comparing its results to those of the original
specification

The Link for ModelSim enables engineers to cosimulate and verify a design
directly between the specification and implementation, eliminating the need
for manual comparisons. Link for ModelSim also allows designers to pass on
MATLAB and Simulink specifications to implementation and verification
teams, without having to first rewrite the design in HDL.

The documentation provided with the Link for ModelSim assumes users have
a moderate level of prerequisite knowledgeable in the following subject areas:

• Hardware design and system integration

• VHDL

• ModelSim SE/PE

• MATLAB

Experience with Simulink and the Fixed-Point Blockset is required for
applying the Simulink component of the product.

Depending on your application, experience with the following MATLAB
toolboxes and Simulink blocksets might also be useful:

1–4



What Is the Link for ModelSim?

Signal Processing Toolbox DSP Blockset

Filter Design Toolbox Communications Blockset

Communications Toolbox

Key Features
Key features of Link for ModelSim include

• Ability to link ModelSim to MATLAB and Simulink for bidirectional
cosimulation, verification, and visualization

• Support for PE and SE versions of ModelSim

• Support for Linux, Solaris, Windows 2000, and Windows XP platforms

• Support for shared memory and TCP/IP socket modes of communication
between MATLAB and Simulink and ModelSim

• A Simulink block for cosimulating HDL models in Simulink

• A Simulink block for exporting test vectors and results as value change
dump (VCD) files

• Support for multiple simultaneous ModelSim instances, and multiple HDL
entities from within one Simulink model or MATLAB function

• Interactive or batch mode cosimulation, debugging, testing, and verification
of HDL code from within MATLAB

The Cosimulation Environment
The Link for ModelSim is a client/server test bench and cosimulation
application. The role that ModelSim plays in a Link for ModelSim simulation
environment depends on whether ModelSim links to MATLAB or Simulink.

MATLAB and ModelSim Links
When linked with MATLAB, ModelSim functions as the client, as the
following figure shows.

1–5



1 Getting Started

MATLAB
Server

ModelSim
Client

Link

Out

Out

In

In

Request

Response

In this scenario, a MATLAB server function waits for service requests that it
receives from a ModelSim simulator session. After receiving a request, the
server establishes a communication link, and invokes a specified MATLAB
function wrapper that computes data for, verifies, or visualizes the HDL
model that is under simulation in ModelSim.

Note You cannot initiate Link for ModelSim communication between
MATLAB and ModelSim from MATLAB. The MATLAB server simply
responds to function call requests that it receives from ModelSim.

The following figure shows how a MATLAB function wraps around and
communicates with ModelSim during a test bench simulation session.

VHDL Entity

OUT

Test Benching M-Function

Input
Arguments

Output
Arguments

Stimulus Response

MATLAB

ModelSim

IN

The MATLAB server can service multiple simultaneous ModelSim sessions
and HDL entities. However, you should adhere to recommended guidelines to
ensure the server can track the I/O associated with each entity and session.
The following figure shows a multiple-client scenario connecting to the server
at TCP/IP socket port 4449.

1–6



What Is the Link for ModelSim?

ModelSim
Client

LinkModelSim
Client

Link
Port
4449

MATLAB
Server

Simulink and ModelSim Links
When linked with Simulink, ModelSim functions as the server, as shown in
the following figure.

Simulink
Client

ModelSim
Server

Out

OutIn
In

Link
Request

Response

In this case, ModelSim responds to simulation requests it receives from
cosimulation blocks in a Simulink model. You initiate a cosimulation session
from Simulink. Once a session is started, you can use Simulink and ModelSim
to monitor simulation progress and results. For example, you might add
signals to a ModelSim Wave window to monitor simulation timing diagrams.

As the following figure shows, multiple cosimulation blocks in a Simulink
model can request the service of multiple instances of ModelSim, using
unique TCP/IP socket ports.

ModelSim
Server

Link

ModelSim
Server

Link

Simulink
Client

Port
4449

Port
4448

1–7



1 Getting Started

Modes of Communication
The mode of communication that the Link for ModelSim uses for a link
between ModelSim and MATLAB or Simulink somewhat depends on whether
your simulation application runs in a local, single-system configuration
or in a network configuration. If ModelSim and the MathWorks products
can run locally on the same system and your application requires only one
communication channel, you have the option of choosing between shared
memory and TCP/IP socket communication. Shared memory communication
provides optimal performance and is the default mode of communication.

TCP/IP socket mode is more versatile. You can use it for single-system and
network configurations. It is the optimal choice for applications that have
growth potential.

For configurations in which ModelSim and the MathWorks products reside on
different systems, each system must be configured for the Ethernet and you
must use TCP/IP socket communication.

Working with MATLAB and ModelSim
When linked with MATLAB, ModelSim functions as the client, initiating
requests of MATLAB that focus on numerical computing, algorithm
development, and visualization. The MATLAB server, which you start with
a supplied MATLAB function, waits for connection requests from instances
of ModelSim running on the same or different computers. When the server
receives a request, it executes a specified wrapper MATLAB function you
have coded to perform tasks on behalf of an entity in your VHDL design.
Parameters that you specify when you start the server indicate whether the
server establishes shared memory or TCP/IP socket communication links.

Once the server is running, you can start and configure ModelSim for use with
MATLAB with a supplied Link for ModelSim function. Optional parameters
allow you to specify

• Tcl commands that execute as part of startup

• A specific ModelSim executable to start

• The name of a ModelSim DO file to store the complete startup script for
future use or reference

1–8



What Is the Link for ModelSim?

During the configuration process, Link for ModelSim equips ModelSim with a
set of Link for ModelSim command extensions you use to

• Load the ModelSim simulator, vsim, with an instance of a VHDL entity
to be tested with MATLAB

• Initiate a MATLAB test bench session for that instance

When you initiate a specific test bench session, you specify parameters that
identify

• The mode and, if appropriate, TCP/IP data necessary for connecting to a
MATLAB server

• The wrapper MATLAB function that attaches to and executes on behalf
of the VHDL entity

• Timing specifications and other control data that specifies when the entity’s
MATLAB function is to be called

The MATLAB server can service multiple simultaneous ModelSim entities
and clients. However, your M-code must track the I/O associated with each
entity or client.

Working with Simulink and ModelSim
When linked with Simulink, ModelSim functions as the server. Using the
Link for ModelSim communications interface, a VHDL Cosimulation block
cosimulates a hardware component by applying input signals to and reading
output signals from a VHDL model under simulation in ModelSim. Multiple
VHDL Cosimulation blocks in a Simulink model can request the service of
multiple instances of ModelSim, using unique TCP/IP socket ports.

Using the Block Parameters dialog for a VHDL Cosimulation block, you
can configure the following:

• Block input and output ports that correspond to signals, including internal
signals of a VHDL model, and an output sample time for block output ports

• Type of communication and communication settings used for exchanging
data between the simulation tools

1–9



1 Getting Started

• Rising-edge or falling-edge clocks to apply to your model

• Tcl commands that you want to run before and after the simulation

Using a Link for ModelSim MATLAB function, you can start ModelSim with
necessary configurations. Optional parameters allow you to specify

• Tcl commands that execute as part of startup

• A specific ModelSim executable to start

• The name of a ModelSim DO file to store the complete startup script for
future use or reference

• The default mode of communication to be used for the link and, if
appropriate, a TCP/IP socket port

During the configuration process, Link for ModelSim equips ModelSim with a
set of Link for ModelSim command extensions. Using one of those commands,
you execute the ModelSim simulator with an instance of a VHDL entity for
cosimulation with Simulink. Once the entity is loaded, you can start the
cosimulation session from Simulink.

The Link for ModelSim also includes a block for generating value change
dump (VCD) files. You might use VCD files generated with this block

• To view Simulink simulation waveforms in your HDL simulation
environment

• To compare results of multiple simulation runs, using the same or different
simulation environments

• As input to post-simulation analysis tools

1–10



Installation and Setup

Installation and Setup

This section helps you to define your Link for ModelSim application
environment. Topics include

• “What Are Your Environment Requirements?” on page 1–12

• “Deciding on a Configuration” on page 1–15

• “Identifying a Server in a Network Configuration” on page 1–17

• “Choosing TCP/IP Socket Ports” on page 1–17

• “Checking Product Requirements” on page 1–18

• “Installing Related Application Software” on page 1–19

• “Installing Link for ModelSim” on page 1–19

• “Setting Up ModelSim for Use with the Link for ModelSim” on page 1–19

The following figure summarizes the installation and setup process in a flow
diagram. Topics that follow explain the steps in more detail.

1–11



1 Getting Started

Done

Yes
Yes

Determine application
environment requirements

No

Identify host name or Internet
address for server systems

Yes

Product
requirements met

?

Install Link for ModelSim

No

Set up
ModelSim for

Link for ModelSim
?

Use
shared memory

?

Choose TCP/IP ports

Set up ModelSimYes

No

Install related software

Decide on a configuration

MATLAB and
Simulink with ModelSim

on same
computer

?

No

What Are Your Environment Requirements?
As part of the installation and setup process, review the following checklist.
It will help you identify environment requirements that pertain to your
Link for ModelSim application. If your answer to a question is “yes,” go to
the topic listed in the second column of the table for information on how
to address the requirement.

1–12



Installation and Setup

Environment Requirements Checklist

Requirement For More Information, See...

Configurations

Will your application use ModelSim with the MATLAB,
Simulink, or both MATLAB and Simulink?

“Deciding on a Configuration” on
page 1–15

Will your application use multiple communication
links?

“Deciding on a Configuration” on
page 1–15

How many instances of the MATLAB server are
required?

“Deciding on a Configuration” on
page 1–15

Will a MATLAB server be handling multiple ModelSim
client connections? If so, how many? Will they be from
the same or different ModelSim sessions?

“Deciding on a Configuration” on
page 1–15

How many MATLAB functions do you need to write to
model your VHDL implementation?

“Deciding on a Configuration” on
page 1–15

If your application will be using Simulink, how many
cosimulation blocks are needed? Will the blocks be
connecting to the same or different ModelSim sessions?

“Deciding on a Configuration” on
page 1–15

To how many ModelSim sessions will your Simulink
model connect?

“Deciding on a Configuration” on
page 1–15

Mode of Communication

Is performance the highest priority for your application?
If so, can you run MATLAB and Simulink and ModelSim
on the same computer system?

“Modes of Communication” on page
1–8

Does your application require only one communication
link (channel) on a single computing system?

“Modes of Communication” on page
1–8

Is configuration flexibility a high priority for your
application? Does the application have growth
potential?

“Modes of Communication” on page
1–8

1–13



1 Getting Started

Requirement For More Information, See...

Do you prefer to use the TCP/IP socket mode of
communication for a single-computer configuration? If
so, do you want the Link for ModelSim to identify an
available socket port on the system or do you want to
choose a socket port yourself?

“Choosing TCP/IP Socket Ports” on
page 1–17

Network Configurations

Have you identified the computer systems that will
function as Link for ModelSim servers?

“Identifying a Server in a Network
Configuration” on page 1–17

What is the Internet address or host name of each
computer system that will function as a server?

“Identifying a Server in a Network
Configuration” on page 1–17

Do you want the Link for ModelSim to identify an
available TCP/IP socket port on server systems for
establishing communication links? Or, do you want to
choose or identify a TCP/IP socket ports yourself?

“Choosing TCP/IP Socket Ports” on
page 1–17

Related Software

Is ModelSim installed on all systems as needed for your
application?

“Installing Related Application
Software” on page 1–19

Is MATLAB installed on all systems as needed for your
application?

“Installing Related Application
Software” on page 1–19

Does your application require the use of any toolboxes?
If so, are the toolboxes installed on all systems as
needed for your application?

“Installing Related Application
Software” on page 1–19

Will you be using the Simulink component of the Link
for ModelSim? If so, is Simulink and the Fixed-Point
Blockset installed on all systems as needed for your
application? Are the required blocksets installed?

“Installing Related Application
Software” on page 1–19

ModelSim Setup

Do you want to set up ModelSim such that it always
starts ready for use with MATLAB and Simulink?

“Setting Up ModelSim for Use with
the Link for ModelSim” on page
1–19

1–14



Installation and Setup

Deciding on a Configuration
As you consider various configurations for an application, keep the following
general guidelines in mind:

• Shared memory communication is an option for configurations that require
only one communication link on a single computing system.

• TCP/IP socket communication is required for configurations that use
multiple communication links on one or more computing systems. Unique
TCP/IP socket ports distinguish the communication links.

• In any configuration, an instance of MATLAB can run only one instance of
the Link for ModelSim MATLAB server (hdldaemon) at a time.

• In a TCP/IP configuration, the MATLAB server can handle multiple client
connections to one or more ModelSim sessions.

• VHDL Cosimulation blocks in a Simulink model can connect to the same or
different ModelSim sessions.

• When using both MATLAB and Simulink, you must use different TCP/IP
ports for links between these products and ModelSim.

The following lists provide samples of valid configurations for using ModelSim
with MATLAB and Simulink, respectively. The scenarios apply whether
ModelSim is running on the same or different computing system as MATLAB
or Simulink. In a network configuration, you use an Internet address in
addition to a TCP/IP socket port to identify the servers in an application
environment.

MATLAB
The following list gives a sampling of valid configurations for using ModelSim
with MATLAB:

• A ModelSim session linked to a MATLAB function foo through a single
instance of the MATLAB server

• A ModelSim session linked to multiple MATLAB functions (for example,
foo and bar) through a single instance of the MATLAB server

1–15



1 Getting Started

• A ModelSim session linked to a MATLAB function foo through multiple
instances of the MATLAB server (each running within the scope of a
unique MATLAB session)

• Multiple ModelSim sessions each linked to a MATLAB function foo
through multiple instances of the MATLAB server (each running within
the scope of a unique MATLAB session)

• Multiple ModelSim sessions each linked to a different MATLAB function
(for example, foo and bar) through the same instance of the MATLAB
server

• Multiple ModelSim sessions each linked to MATLAB function foo through
a single instance of the MATLAB server

Note Although multiple ModelSim sessions can link to the same MATLAB
function in the same instance of the MATLAB server, as the last configuration
scenario suggests, such links are not recommended. If the MATLAB function
maintains state (for example, maintains global or persistent variables), you
may experience unexpected results because the MATLAB function does not
distinguish between callers when handling input and output data. If you
must apply this configuration scenario, consider deriving unique instances of
the MATLAB function to handle requests for each VHDL entity.

Simulink
The following list gives a sampling of valid local configurations for using
Simulink with ModelSim:

• A VHDL Cosimulation block in a Simulink model linked to a single
ModelSim session

• Multiple VHDL Cosimulation blocks in a Simulink model linked to the
same ModelSim session

• A VHDL Cosimulation block in a Simulink model linked to multiple
ModelSim sessions

• Multiple VHDL Cosimulation blocks in a Simulink model linked to
different ModelSim sessions

1–16



Installation and Setup

Identifying a Server in a Network Configuration
If you need to set up your Link for ModelSim application such that ModelSim
and the MathWorks products reside on different systems, you must set up
the systems to use

• TCP/IP networking protocol

• Link for ModelSim TCP/IP socket mode of communication

As part of your application setup, you must identify

• The Internet address or host name of the computer running the server
component of your application

• The TCP/IP socket port number or service name (alias) to be used for Link
for ModelSim connections

For guidelines on choosing TCP/IP socket ports, see “Choosing TCP/IP Socket
Ports” on page 1–17.

Choosing TCP/IP Socket Ports
To use the TCP/IP socket communication, you must choose a TCP/IP socket
port number that is available in your computing environment for use by
the Link for ModelSim client and server components. The two components
use the port number to establish a TCP/IP connection. Port numbers are
particularly important for applications that implement multiple clients and
servers and use TCP/IP socket communication on a single node. The port
numbers uniquely identify each client and server and enable connections only
between components sharing the same port number. For remote network
configurations, the Internet address helps distinguish multiple connections.

A TCP/IP socket port number (or alias) is a shared resource. To avoid potential
collisions, particularly on servers, you should use caution when choosing a
port number for your application. Consider the following guidelines:

• If you are setting up a link for MATLAB, consider the Link for ModelSim
option that directs the operating system to choose an available port number
for you. To use this option, specify 0 for the socket port number.

1–17



1 Getting Started

• Choose a port number that is registered for general use. Registered ports
range from 1024 to 49151.

• If you do not have a registered port to use, review the list of assigned
registered ports and choose a port in the range 5001 to 49151 that is not in
use. Ports 1024 to 5000 are also registered, however operating systems use
ports in this range for client programs.

Consider registering a port you choose to use.

• Choose a port number that does not contain patterns or have a known
meaning. That is, avoid port numbers that more likely to be used by others
because they are easier to remember.

• Do not use ports 1 to 1023. These ports are reserved for use by the Internet
Assigned Numbers Authority (IANA).

• Avoid using ports 49152 through 65535. These are dynamic ports that
operating systems use randomly. If you choose one of these ports, you
risk a potential port conflict.

Note The socket port resource is associated with the server component
of a Link for ModelSim configuration. That is, if you use MATLAB in a test
bench configuration, the socket port is a resource of the system running
MATLAB. If you use Simulink in a cosimulation configuration, the socket port
is a resource of the system running ModelSim.

Checking Product Requirements
Link for ModelSim requires the following:

Platform Linux

Solaris

Windows 2000

Windows XP

Application software ModelSim SE/PE, a Model Technology Inc.
product

MATLAB

1–18



Installation and Setup

Application software
required for cosimulation

Simulink

Fixed-Point Blockset

Optional application
software

Communications Blockset

DSP Blockset

Filter Design Toolbox

Signal Processing Toolbox

Installing Related Application Software
Based on your configuration decisions and the software required for your Link
for ModelSim application, identify software you need to install and where you
need to install it. For example, if you need to run multiple instances of the
Link for ModelSim MATLAB server, you need to install MATLAB and any
applicable toolbox software on multiple systems. Each instance of MATLAB
can run only one instance of the server.

For details on how to install ModelSim, see the installation instructions for
that product. For information on installing MathWorks products, see the
MATLAB installation instructions.

Installing Link for ModelSim
Based on your configuration decisions, identify systems on which you need to
install the Link for ModelSim. Install it on each system running MATLAB
that requires a communication channel for ModelSim and MATLAB or
Simulink cosimulation.

For details on how to install the Link for ModelSim, see the MATLAB
installation instructions.

Setting Up ModelSim for Use with the Link for ModelSim
Once all the required software is installed, you can choose to set up ModelSim
such that it is always ready for use with MATLAB and Simulink. You can
complete this setup immediately after installing the software (or later) either
interactively or programmatically from scripts.

1–19



1 Getting Started

To set up ModelSim for use with the Link for ModelSim as part of the
installation process, use the MATLAB function setupmodelsim. You can use
the function in interactive mode or command-line mode. The interactive
mode displays messages and prompts you for input. The command-line mode
is available for script-based setups.

1–20



Installation and Setup

Running the Setup Program in Interactive Mode
To run the ModelSim setup program in interactive mode,

1 Enter the function at the MATLAB command prompt:

setupmodelsim

Alternatively, you can specify the function with the property name and
property value pair 'action', 'install'.

setupmodelsim('action', 'install')

The installation script asks you to identify the installed version of
ModelSim that you want to use with the Link for ModelSim.

Identify the ModelSim installation to be configured for
MATLAB and Simulink.

Do you want setupmodelsim to locate installed ModelSim
executables [y]/n?

2 Specify an installed version of ModelSim. If you want to explicitly specify
the path for an installed version of ModelSim, Enter n. The script prompts
you to enter an explicit path.

Please enter the path to your ModelSim executable
file (modelsim.exe or vsim.exe):

If you prefer that setupmodelsim locate and display a list of installed
versions, enter y or press the Enter key. enter y. The function searches for
installed versions of ModelSim and displays output similar to the following:

Select a ModelSim installation:

[2] pathname2\modelsim\win32 ModelSim SE n.nx
[1] pathname1\modelsim\win32 ModelSim SE n.nx
[0] None

Selected ModelSim installation:

3 Depending on your response in step 2, enter one of the following:

1–21



1 Getting Started

• The complete pathname for a ModelSim or vsim executable

• One of the listed numeric installation identifiers (0, 1, 2, and so on)
The function modifies the installation files, displays the following message,
and exits:

ModelSim successfully configured for MATLAB and Simulink

If the specified ModelSim installation has already been modified for use
with MATLAB and Simulink, the following message appears:

Previous MATLAB startup file found in this installation
of ModelSim:
d:\applications\modelsim\win32\..

\tcl\ModelSimTclFunctionsForMATLAB.tcl
Do you want to replace this file [y]/n?

If you choose to overwrite the file, setupmodelsim overwrites it and then
displays the following message:

ModelSim successfully configured for MATLAB and Simulink

Otherwise, setupmodelsim displays the following message and exits
without modifying the file:

ModelSim configuration not updated for MATLAB and Simulink

Note Although the installation script identifies an installed version of
ModelSim for use with the Link for ModelSim, you can override this setting at
any time with subsequent interactive or programmatic calls to setupmodelsim
or vsim.

Running the Setup Program in Command-Line Mode
To run the ModelSim setup program in command-line mode, call the
setupmodelsim function with property name and property value pairs that
specify the following:

• Tcl commands that execute during ModelSim startup

• The pathname of a specific version of a ModelSim executable

1–22



Installation and Setup

• Whether the function is to install or uninstall support for MATLAB and
Simulink

See the description of setupmodelsim for more information.

Removing Link for ModelSim Configuration Information from
ModelSim
To remove Link for ModelSim configuration information from ModelSim,
issue the setupmodelsim function with the property name/property value pair
'action','uninstall'.

setupmodelsim ('action', 'uninstall')

1–23



1 Getting Started

Getting Help with the Link for ModelSim

The following sections explain how to get help with using the Link for
ModelSim:

• “Documentation Overview” on page 1–24

• “Online Help” on page 1–25

• “Demos and Tutorials” on page 1–25

Documentation Overview
The following documentation is available with this product.

Chapter 1, “Getting Started” Explains what the product is, the steps
for installing and setting it up, how you
might apply it to the hardware design
process, and how to gain access to product
documentation and online help. Guides you
through product demos.

Chapter 2, “MATLAB and
ModelSim Tutorial”

Guides you through the process of setting
up and running a sample ModelSim and
MATLAB test bench session.

Chapter 3, “Simulink and
ModelSim Tutorial ”

Guides you through the basic steps for
setting up an application of the Link for
ModelSim that uses Simulink to verify a
simple VHDL inverter model.

Chapter 4, “MATLAB and
ModelSim Manchester
Receiver Tutorial”

Guides you through the steps for setting up
a script that applies the Link for ModelSim,
MATLAB, and ModelSim to verify a VHDL
Manchester Receiver model with clock
recovery capabilities.

Chapter 5, “Coding a Link
for ModelSim MATLAB
Application”

Explains how to code VHDL models and
MATLAB functions for Link for ModelSim
MATLAB applications. Provides details on
how the Link for ModelSim interface maps
VHDL data types to MATLAB data types
and vice versa.

1–24



Getting Help with the Link for ModelSim

Chapter 6, “Starting and
Controlling MATLAB Test
Bench Sessions”

Explains how to start and control ModelSim
and MATLAB test bench sessions.

Chapter 7, “Modeling and
Verifying a VHDL Design
with Simulink”

Explains how to use ModelSim and
Simulink for cosimulation modeling.

Chapter 8, “MATLAB
Functions — Alphabetical
List”

Describes the Link for ModelSim functions
for use with MATLAB

Chapter 9, “ModelSim
Commands — Alphabetical
List”

Describes the Link for ModelSim commands
for use with ModelSim.

Chapter 10, “Simulink Blocks
— Alphabetical List”

Describes the Link for ModelSim blocks for
use with Simulink.

Online Help
The following online help is available:

• Online help in the MATLAB Help browser. Click the Link for ModelSim
product link in the browser’s Contents.

• M-help for Link for ModelSim MATLAB functions and ModelSim
commands. This help is accessible with the MATLAB doc and help
commands. For example, enter the command line doc setupmodelsim.

• Block reference pages accessible through the Simulink interface.

Demos and Tutorials
The Link for ModelSim provides demos and tutorials to help you get started.
The demos give you a quick view of the product’s capabilities and examples
of how you might apply the product. You can run them with limited product
exposure.

The following topics help you run two of the demos available as part of the
product. The first shows how ModelSim works with MATLAB and the second
shows how ModelSim works with Simulink:

1–25



1 Getting Started

• “Running the ModelSim and MATLAB Random Number Generator Demo”
on page 1–27

• “Running the Simulink and ModelSim Manchester Receiver Demo” on
page 1–32

Tutorials provide procedural instruction on how to apply the product. Some
focus on features while others focus on application scenarios. The following
topics guide you through three tutorials. The first two tutorials listed have a
feature focus and each addresses use of ModelSim with either MATLAB or
Simulink. The third tutorial has more of an application focus and shows you
how you might automate the cosimulation setup and processing.

• Chapter 2, “MATLAB and ModelSim Tutorial”

• Chapter 3, “Simulink and ModelSim Tutorial ”

• Chapter 4, “MATLAB and ModelSim Manchester Receiver Tutorial”

1–26



Running the ModelSim and MATLAB Random Number Generator Demo

Running the ModelSim and MATLAB Random Number Generator
Demo

Link for ModelSim includes a demo that provides a high-level view of how
MATLAB and ModelSim work together. To run the demo, you need to be
running MATLAB and ModelSim and Link for ModelSim must be installed.
Run the demonstration by entering commands and graphical user interface
(GUI) data as explained in the following procedure:

1 Invoke MATLAB and make it your active window.

2 Set up and change to a writable working directory that is outside the
context of your MATALB installation directory.

3 Enter the function name modsimrand at the prompt in the MATLAB
Command Window.

modsimrand

The function displays the following dialog box.

1–27

matlab:modsimrand


1 Getting Started

4 Specify the location into which the demo is to place the ModelSim project
files that it generates. This location must be writable. You can type a path
in the Generate VHDL project in directory text field or you can click
Browse to find an appropriate directory.

A temporary path is created by default.

1–28



Running the ModelSim and MATLAB Random Number Generator Demo

5 Specify a communication mode for the link between ModelSim and
MATLAB. By default, the demo uses a shared memory channel for
communication. If you prefer to use TCP/IP socket communication, clear
the Shared memory check box and enter a socket port number in the
Port number text field. If you specify 0, the operating system running on
the computer chooses a port number that is valid and available on your
system for you. For information on choosing TCP/IP port numbers, see
“Choosing TCP/IP Socket Ports” on page 1–17.

Note You must specify a socket port number. The demo does not
support socket service names.

6 Choose the version of the HDL model you want to simulate — VHDL or
Verilog. If you choose Verilog, the demo applies the Link for ModelSim
wrapverilog function to a Verilog version of the model.

7 Click View callback M-file. MATLAB displays the M-code for the
function that executes in the MATLAB environment on behalf of HDL
model. Browse through the code to get a sense of what the M-file does. A
key task for implementing a MATLAB Link for ModelSim application is to
program a MATLAB test bench function such that it can communication
with an HDL model under simulation in ModelSim. When you are done
browsing, close the editor window.

8 Click Start simulation.

The program

a Starts the MATLAB server. Messages similar to the following appear in
the MATLAB Command Window.

To enable access from ModelSim, HDLDaemon is used with
appropriate link settings
The following messages are produced by HDLDaemon to indicate
link status ...
HDLDaemon shared memory server is running with 0 connections

b Creates the subfolder modsimrand in the specified VHDL project
directory.

c Generates the macro file modsimrand.do.

1–29



1 Getting Started

d Adds the macro file to the modsimrand folder.

e Wraps the Verilog code if you selected Verilog.

f Creates a project.

g Compiles the project entities and architectures.

h Loads the modsimrand entity for simulation.

i Starts a simulation.

As the DO macro completes this processing, it displays informational
messages in the command line pane of the ModelSim main window, as
shown below.

Also note the changes that occur in the modsimrand window plots.

1–30



Running the ModelSim and MATLAB Random Number Generator Demo

9 End the simulation in ModelSim by entering the quit command at the
VSIM n> prompt.

10 Shutdown the MATLAB server, by calling hdldaemon with the 'kill' option
as follows:

hdldaemon('kill')

1–31



1 Getting Started

Running the Simulink and ModelSim Manchester Receiver Demo

The Link for ModelSim includes a demo that provides a high-level view of
how Simulink and ModelSim work together. To run the demo, you need to be
running MATLAB and the following software must be installed:

• ModelSim

• Simulink

• Link for ModelSim

• Fixed-Point Blockset

Run the demo by entering commands and GUI data as explained in the
following procedure:

1 Invoke MATLAB and make it your active window.

2 Open the Simulink model manchestermodel. The following Simulink model
window appears.

1–32

matlab:manchestermodel


Running the Simulink and ModelSim Manchester Receiver Demo

Note If you have the Communications Blockset installed, you have the
option of running the demo manchestermodelcommblks.mdl.

The VHDL Manchester Receiver block represents a Manchester Receiver
design that is coded in VHDL and will be cosimulated in the ModelSim
environment.

3 Save a writable version of the model to a directory outside the context of
your MATLAB installation directory.

1–33



1 Getting Started

4 Decide on a mode of communication and, if necessary, set the link
communication parameters appropriately for your system.

If you prefer to use shared memory, skip to step 5.

To use TCP/IP socket communication, do the following:

a Double-click the VHDL Manchester Receiver block. The Block
Parameters VHDL Manchester Receiver dialog appears.

b Click the Comm tab. The dialog displays communication configuration
information.

1–34



Running the Simulink and ModelSim Manchester Receiver Demo

c Clear the Shared memory check box.

d If necessary, change the value in the Port number or service text box
to a valid port number or service name for your system.

e Click Apply and then OK.

5 Set up ModelSim for use with Simulink.

a Select and copy one of the following command lines from the instructions
that appear at the bottom of the model window:

Shared memory link

vsim('tclstart',manchestercmds)

TCP/IP socket link

vsim('tclstart',manchestercmds,'socketsimulink',4442)

1–35



1 Getting Started

The vsim function launches ModelSim for use with the Link for
ModelSim. The property name and property value pairs in the command
lines specify the following information.

Property Name and Property Value
Pair...

Specifies...

'tclstart', manchestercmds, Tcl commands that execute
after ModelSim starts running

’socketsimulink', 4442 TCP/IP socket communication
for the link between Simulink
and ModelSim, using socket
port number 4442

b Paste the command line in the MATLAB Command Window.

c If you modified the socket port specification in step 5, replace port
number 4442 with the appropriate port number or service name for your
system. The socket port that you specify in this command line must
match the socket port value specified in the Block Parameters dialog.
If they do not match, ModelSim starts but is not able to establish a
communication link with Simulink. If you attempt to run the Simulation,
Simulink reports a message indicating that the socket is not connected.

d Press Enter. ModelSim starts and processes the Tcl commands specified
in the M-file manchestercmds. The Tcl commands

• Create a design library, if one does not already exist

• Load required packages and compile each of the three VHDL entities
included in the VHDL Manchester receiver model.

• Load an instance of each of the three entities for simulation.

• Establish a communication link with Simulink.

Scroll through the messages displayed in the ModelSim command
window for more detail.

To view the Tcl commands, edit the M-file manchestercmds.m.

6 From the Simulink model window, start the simulation by clicking the
model’s start button. The cosimulation session runs. The I/Q Map block of
the Simulink model opens a figure window and plots a map of the signal

1–36



Running the Simulink and ModelSim Manchester Receiver Demo

values for inphase and quadrature waveforms. The figure window will
look similar to the following:

1–37



1 Getting Started

1–38



2

MATLAB and ModelSim
Tutorial

This chapter guides you through the basic steps for setting up an application
of Link for ModelSim that uses MATLAB to verify a simple VHDL model of a
pseudo random number generator based on the Fibonacci sequence.

Note To complete the tutorial, MATLAB, ModelSim, and the Link for
ModelSim must be installed.

“Setting Up Tutorial Files” (p. 2–3) Explains how to set up folders and
files for the tutorial.

“Starting the MATLAB Server” (p.
2–4)

Explains how to start the MATLAB
server.

“Setting Up ModelSim ” (p. 2–6) Explains the basic steps for setting
up a ModelSim project.

“Developing the VHDL Code” (p.
2–8)

Introduces Link for ModelSim VHDL
coding requirements.

“Compiling the VHDL File” (p. 2–11) Explains how to compile a sample
VHDL file for use with Link for
ModelSim.

“Loading the Simulation” (p. 2–12) Explains how to load the sample
simulation.

“Developing the MATLAB Function”
(p. 2–15)

Introduces Link for ModelSim
MATLAB function coding
requirements.



2 MATLAB and ModelSim Tutorial

“Running the Simulation” (p. 2–18) Explains how to start and monitor
the sample simulation.

“Shutting Down the Simulation” (p.
2–21)

Explains how to shut down a Link
for ModelSim test bench session in
an orderly way.

2–2



Setting Up Tutorial Files

Setting Up Tutorial Files

To ensure that others can access copies of the tutorial files, set up a directory
for your own tutorial work:

1 Create a directory outside the scope of your MATLAB installation directory
into which you can copy the tutorial files. The directory must be writable.
This tutorial assumes that you create a directory named MyPlayArea

2 Copy the following files to the directory you just created:

MATLABROOT\toolbox\modelsim\modelsimdemos\modsimrand_plot.m

MATLABROOT\toolbox\modelsim\modelsimdemos\VHDL\modsimrand\modsimrand.vhd

2–3



2 MATLAB and ModelSim Tutorial

Starting the MATLAB Server

This section describes starting MATLAB, setting up the current directory for
completing the tutorial, starting the product’s MATLAB server component,
and checking for client connections. These instructions assume you are
familiar with the MATLAB user interface:

1 Start MATLAB.

2 Set your MATLAB current directory to the directory you created in “Setting
Up Tutorial Files” on page 2–3.

3 Check whether the MATLAB server is running. Do this by calling the
function hdldaemon with the 'status' option in the MATLAB Command
Window as shown below.

hdldaemon('status')

If the server is not running, the function displays

HDLDaemon is NOT running

If the server is running, the message reads

HDLDaemon socket server is running on Port portnum
with 0 connections

4 Start or restart the server by calling hdldaemon with the property
name/property value pair 'socket' 0. The value 0 specifies that the
operating system assign the server a TCP/IP socket port that is available
on your system. For example:

hdldaemon('socket', 0)

The server informs you that it has started by displaying the following
message. The portnum will be specific to your system.

HDLDaemon socket server is running on Port portnum
with 0 connections

2–4



Starting the MATLAB Server

Other options that you can specify in the hdldaemon function call include

• Shared memory communication instead of TCP/IP socket communication

• Whether time will be returned as scaled or a 64-bit integer

For details on how to specify the various options, see “Starting the
MATLAB Server” on page 2–4 or the description of hdldaemon.

Note The hdldaemon function can handle multiple connections that
are initiated by multiple commands from a single ModelSim session or
multiple sessions.

2–5



2 MATLAB and ModelSim Tutorial

Setting Up ModelSim

This section describes the basic procedure for starting ModelSim and setting
up a ModelSim project. These instructions assume you are familiar with
the ModelSim user interface:

1 Start ModelSim from the MATLAB environment by calling the function
vsim in the MATLAB Command Window.

vsim

This function launches and configures ModelSim for use with the Link
for ModelSim. The initial directory of ModelSim matches your MATLAB
current directory.

2 Verify the current ModelSim directory. You can verify that the current
ModelSim directory matches the MATLAB current directory by entering
the ls command in the ModelSim command window.

The command should list the files modsimrand.vhd, modsimrand_plot.m,
and transcript.

2–6



Setting Up ModelSim

3 Create a design library to hold your demo compilation results. To create
the library and required _info file, enter the vlib and vmap commands
as follows:

ModelSim> vlib work

ModelSim> vmap work work

Note You must use the ModelSim File menu or vlib command to create
the library directory to ensure that the required _info file is created. Do
not create the library with operating system commands.

2–7



2 MATLAB and ModelSim Tutorial

Developing the VHDL Code

After setting up a design library, typically you would use the ModelSim Editor
to create and modify your VHDL code. For this tutorial, open and examine
the existing file modsimrand.vhd. This section highlights areas of code in
modsimrand.vhd that are of interest for a ModelSim and MATLAB test bench:

1 Open modsimrand.vhd in the edit window with the edit command, as
follows:

ModelSim> edit modsimrand.vhd

ModelSim opens its edit window and displays the VHDL code for
modsimrand.vhd.

2–8



Developing the VHDL Code

2 Search for ENTITY modsimrand. This line defines the VHDL entity
modsimrand:

ENTITY modsimrand IS
PORT (

clk : IN std_logic ;
clk_en : IN std_logic ;
reset : IN std_logic ;
dout : OUT std_logic_vector (31 DOWNTO 0);

END modsimrand;

This entity will be verified in the MATLAB environment. Note the
following:

• By default, the MATLAB server assumes that the name of the MATLAB
function that verifies the entity in the MATLAB environment is the
same as the entity name. You have the option of naming the MATLAB
function explicitly. However, if you do not specify a name, the server
expects the function name to match the entity name. In this example,
the MATLAB function name is modsimrand_plot and does not match.

• The entity must be defined with a PORT clause that includes at least
one port definition. Each port definition must specify a port mode (IN,
OUT, or INOUT) and a VHDL data type that is supported by the Link for

2–9



2 MATLAB and ModelSim Tutorial

ModelSim interface. For a list of the supported types, see “Coding VHDL
Entities for MATLAB Verification” on page 5–3.

The entity modsimrand in this example is defined with three input ports
clk, clk_en, and reset of type STD_LOGIC and output port dout of type
STD_LOGIC_VECTOR. The output port passes simulation output data out to
the MATLAB function for verification. The optional input ports receive
clock and reset signals from the function. Alternatively, the input ports
can receive signals from ModelSim force commands.

For more information on coding port entities for use with MATLAB, see
“Coding VHDL Entities for MATLAB Verification” on page 5–3.

3 Browse through the rest of modsimrand.vhd. The remaining code defines a
behavioral architecture for modsimrand that writes a randomly generated
Fibonacci sequence to an output register when the clock experiences a
rising edge.

4 Close the ModelSim edit window.

2–10



Compiling the VHDL File

Compiling the VHDL File

After you create or edit your VHDL source files, compile them. As part of this
tutorial, compile modsimrand.vhd. One way of compiling the file is to click
the filename in the project workspace and select Compile–>Compile All.
Another alternative is to specify modsimrand.vhd with the vcom command, as
follows:

ModelSim> vcom modsimrand.vhd

If the compilation succeeds, informational messages appear in the command
window and the compiler populates the work library with the compilation
results.

2–11



2 MATLAB and ModelSim Tutorial

Loading the Simulation

Once you successfully compile the VHDL source file, you are ready to load the
model for simulation. This section explains how to load an instance of entity
modsimrand for simulation:

1 Load the instance of modsimrand for verification. To load the instance,
specify the vsimmatlab command as follows:

ModelSim> vsimmatlab modsimrand

The vsimmatlab command starts the ModelSim simulator, vsim, specifically
for use with MATLAB. You can specify vsimmatlab with any combination
of valid ModelSim vsim command parameters and options.

ModelSim displays a series of messages in the command window as it loads
the entity’s packages and architecture.

2 Initialize the simulator for verifying modsimrand with MATLAB. You
initialize ModelSim by using the matlabtb or matlabtbeval ModelSim
command. These commands define the communication link and a callback
to a MATLAB function that executes in MATLAB on behalf of ModelSim.
In addition, the matlabtb commands can specify parameters that control
when the MATLAB function executes.

2–12



Loading the Simulation

For this tutorial, enter the following matlabtb command:

VSIM n> matlabtb modsimrand -mfunc modsimrand_plot
-rising /modsimrand/clk -socket portnum

Note The port number or service name that you specify with -socket
must match the port value returned by or specified with the call to
hdldaemon that started the MATLAB server. If you need to verify the port
number, issue a call to the hdldaemon function with 'status' as follows:

hdldaemon('status')

HDLDaemon socket server is running on port 4795 with 0 connections

This function call indicates that the server is using TCP/IP socket
communication with socket port 4795 and is running with no connections.
If a shared memory link is in use, the message will reflect that mode of
communication.

Arguments in the command line specify the following:

modsimrand The instance of the VHDL entity that is to be
attached to a MATLAB function.

-mfunc
modsimrand_plot

The MATLAB function to be called on behalf
of entity modsimrand.

-rising
/modsimrand/clk

The function modsimrand_plot.m be called
when the signal /modsimrand/clk changes
from ’0' to '1'. Note the signal is specified in a
full pathname format. If you do not specify a
full pathname, the command applies ModelSim
rules to resolve signal specifications.

-socket portnum The TCP/IP socket port portnum to be used to
establish a communication link with MATLAB.

This command links an instance of the entity modsimrand to the function
modsimrand_plot.m, which executes within the context of MATLAB based
on specified timing parameters. In this case, the MATLAB function is
called when the signal /modsimrand/clk experiences a rising edge.

2–13



2 MATLAB and ModelSim Tutorial

Note By default, the Link for ModelSim invokes a MATLAB function
that has the same name as the specified entity instance. Thus, if the names
are the same, you can omit the -mfunc option.

3 Initialize clock and reset input signals. You can drive simulation input
signals using a number of mechanisms, including ModelSim force
commands and an iport parameter (see “Developing the MATLAB
Function” on page 2–15). For now, enter the following force commands:

VSIM n> force /modsimrand/clk 0 0 ns, 1 5 ns -repeat 10 ns
VSIM n> force /modsimrand/clk_en 1
VSIM n> force /modsimrand/reset 1 0, 0 50 ns

The first command forces the clk signal to value 0 at 0 nanoseconds and to
1 at 5 nanoseconds. After 10 nanoseconds, the cycle starts to repeat every
10 nanoseconds. The second and third force commands set clk_en to 1
and reset to 1 at 0 nanoseconds and to 0 at 50 nanoseconds.

The ModelSim environment is ready to run a simulation. Now you need to set
up the MATLAB function.

2–14



Developing the MATLAB Function

Developing the MATLAB Function

Link for ModelSim verifies VHDL hardware in MATLAB as a function.
Typically, at this point you would create or edit a MATLAB function that meets
the Link for ModelSim requirements. For this tutorial, open and examine the
existing file modsimrand_plot.m. This section highlights areas of code in
modsimrand_plot.m that are required for MATLAB to verify a VHDL model:

1 Open modsimrand_plot.m in the MATLAB Edit/Debug window. For
example:

edit modsimrand_plot.m

2 Look at line 1. This is where you specify the MATLAB function name
and required parameters:

function [iport,tnext] = modsimrand_plot(oport,tnow,portinfo)

This function definition is significant in that it represents the
communication channel between MATLAB and ModelSim. When coding
the function definition, consider the following:

• By default, Link for ModelSim assumes the function name is the same
as the name of the VHDL entity that it services. However, you can name
the function differently, as in this case. The name of the VHDL entity is
modsimrand and the name of the function is modsimrand_plot. Because
the names differ, you must explicitly specify the function name when you
request service from ModelSim.

• You must define the function with two output parameters, iport and
tnext, and three input parameters, oport, tnow, and portinfo. The
following table briefly describes the purpose of each parameter:

iport Structure that specifies IN ports to be forced.

tnext Specifies an optional future time at which the
MATLAB function is called back.

oport Structure that receives signal values from the OUT
ports defined for the corresponding VHDL entity at
the time specified by tnow.

2–15



2 MATLAB and ModelSim Tutorial

tnow Receives the simulation time at which the MATLAB
function is called.

portinfo For the first invocation of the function only, receives
an array of information that describes the ports
defined for the corresponding VHDL entity.

For more information on the required MATLAB function parameters, see
“Setting up Expected Parameters” on page 5–13.

• You can use the iport parameter to drive input signals instead
of, or in addition to, using other signal sources, such as ModelSim
force commands. Depending on your application, you might use any
combination of input sources. However, keep in mind that if multiple
sources drive signals to a single iport, a resolution function is required
for handling signal contention.

3 Make note of the data types of ports defined for the entity under simulation.
The Link for ModelSim interface converts VHDL data types to comparable
MATLAB data types and vice versa. As you develop your MATLAB
function, you must know the types of the data that it receives from and
needs to return to ModelSim.

The entity defined for this tutorial consists of three input ports of type
STD_LOGIC and an output port of type STD_LOGIC_VECTOR. The interface
converts scalar data of type STD_LOGIC to a character that matches the
character literal for the corresponding enumerated type. Data of type
STD_LOGIC_VECTOR consists of a column vector of characters with one bit
per character.

For more information on interface data type conversions, see “Data Type
Conversions” on page 5–9.

4 Search for oport.dout. This line of code shows how the data that a
MATLAB function receives from ModelSim might need to be converted for
use in the MATLAB environment:

ud.buffer(cyc) = mvl2dec(oport.dout)

In this case, the function receives STD_LOGIC_VECTOR data on oport. The
function mvl2dec converts the bit vector to a decimal value that can be used
in arithmetic computations. “Converting Data for Manipulation” on page

2–16



Developing the MATLAB Function

5–17 provides a summary of the types of data conversions to consider when
coding your own MATLAB functions.

5 Browse through the rest of modsimrand_plot.m.

2–17



2 MATLAB and ModelSim Tutorial

Running the Simulation

This section explains how to start and monitor a simulation:

1 Open ModelSim and MATLAB windows.

2 In MATLAB, verify the client connection by calling hdldaemon with the
'status' option:

hdldaemon('status')

This function returns a message indicating a connection exists:

HDLDaemon socket server is running on port 4795 with 1 connection

Note If you attempt to run the simulation before starting the hdldaemon
in MATLAB, you will receive the following warning:

#ML Warn — MATLAB server not available (yet),
The entity 'modsimrand' will not be active

3 Set ModelSim to be your active window and enter the following run
command:

VSIM n> run 80000

This command advances the simulation 80000 time steps. If you are
using default settings for the simulation time step, ModelSim runs the
simulation for 80,000 nanoseconds.

4 Restart the simulation with the following command:

VSIM n> restart

The Restart dialog box appears. Leave all the options enabled and click
Restart.

2–18



Running the Simulation

Note The Restart button clears the simulation context established by a
matlab or matlabtb command. Thus, after restarting ModelSim, you must
reissue the previous command or issue a new command.

5 Reissue the matlabtb command.

VSIM n> matlabtb modsimrand -mfunc modsimrand_plot
-rising /modsimrand/clk -socket portnum

6 Open modsimrand_plot.m in the MATLAB Edit/Debug window.

7 Search for oport.dout and set a breakpoint at that line by clicking next to
the line number. A red breakpoint marker will appear.

8 Return to ModelSim and enter the following commands in the command
window:

Vsim n> force /modsimrand/clk 0 0,1 5 ns -repeat 10 ns
Vsim n> force /modsimrand/clk_en 1
Vsim n> force /modsimrand/reset 1 0, 0 50 ns
Vsim n> run 80000

The simulation runs in MATLAB until it reaches the breakpoint that you
just set in modsimrand_plot.m. ModelSim is now blocked and remains
blocked until you explicitly unblock it. While the simulation is blocked, note
that MATLAB displays the data that ModelSim passed to the MATLAB
function in the Workspace window.

2–19



2 MATLAB and ModelSim Tutorial

9 Examine oport, portinfo, and tnow.

10 Click Debug–>Continue in the MATLAB Edit/Debug window. Note that
portinfo disappears after the first function invocation. Also note that the
value of tnow changes from 0 to 5e-009 .

11 Clear the breakpoint by clicking the red breakpoint marker.

12 Unblock ModelSim and continue the simulation by clicking
Debug–>Continue in the MATLAB Edit/Debug window.

The simulation runs to completion.

2–20



Shutting Down the Simulation

Shutting Down the Simulation

This section explains how to shut down a simulation in an orderly way.

In ModelSim,

1 Stop the simulation on the client side by selecting Simulate–>End
Simulation or entering the quit command.

2 Close the modsimrand project by selecting File–>Close–>Project. A
warning dialog appears. Click OK.

3 Quit ModelSim.

In MATLAB, just quit the application.

To shut down the server without closing MATLAB, you have the option of
calling hdldaemon with the 'kill' option:

hdldaemon('kill')

The following message appears, confirming that the server was shut down:

HDLDaemon server was shut down

2–21



2 MATLAB and ModelSim Tutorial

2–22



3

Simulink and ModelSim
Tutorial

This chapter guides you through the basic steps for setting up a Link for
ModelSim application that uses Simulink to verify a simple VHDL model
that inverts bits.

“Developing the VHDL Code” (p.
3–2)

Guides you through editing VHDL
code for a simple inverter model with
the ModelSim VHDL editor.

“Compiling the VHDL File” (p. 3–4) Explains how to compile the VHDL
code.

“Creating the Simulink Model” (p.
3–6)

Guides you through the process of
creating a simple Simulink model
that includes the VHDL inverter
model.

“Setting Up ModelSim for Use with
Simulink” (p. 3–12)

Explains how to start ModelSim
from MATLAB and configure it for
use with Simulink.

“Loading Instances of the VHDL
Entity for Cosimulation with
Simulink” (p. 3–13)

Explains how to load an instance
of the VHDL inverter model for
cosimulation with Simulink.

“Running the Simulation” (p. 3–14) Guides you through a scenario of
running and monitoring Simulink
and Link for ModelSim of the
Simulink model.

“Shutting Down the Simulation” (p.
3–17)

Explains how to shut down a
cosimulation in an orderly way.



3 Simulink and ModelSim Tutorial

Developing the VHDL Code

A typical Simulink and ModelSim scenario is to create a model for a specific
hardware component in ModelSim that you later need to integrate into
a larger Simulink model. This is the scenario introduced in this tutorial.
The first step is to design and develop a VHDL model in ModelSim. In this
tutorial, you use ModelSim and VHDL to develop a model that represents
the following inverter:

sin

sout

...10101000

...01010111

8

8

The VHDL entity for this model will represent 8-bit streams of input and
output signal values with an IN port and OUT port of type STD_LOGIC_VECTOR.
An input clock signal of type STD_LOGIC will trigger the bit inversion process
when set:

1 Start ModelSim

2 Change to the writable directory MyPlayArea, which you may have created
for another tutorial. If you have not created the directory, create it now.
The directory must be writable.

ModelSim>cd C:/MyPlayArea

3 Open a new VHDL source edit window.

4 Add the following VHDL code:

---------------------------------------------------
-- Simulink and ModelSim Inverter Tutorial
--
-- Copyright 2003 The MathWorks, Inc.
-- $Date: 2003/11/13 22:18:11 $
---------------------------------------------------
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY inverter IS PORT (

3–2



Developing the VHDL Code

sin : IN std_logic_vector(7 DOWNTO 0);
sout: OUT std_logic_vector(7 DOWNTO 0);
clk : IN std_logic

);
END inverter;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ARCHITECTURE behavioral OF inverter IS
BEGIN

PROCESS(clk)
BEGIN

IF (clk'EVENT AND clk = '1') THEN
sout <= NOT sin;

END IF;
END PROCESS;

END behavioral;

5 Save the file to inverter.vhd.

3–3



3 Simulink and ModelSim Tutorial

Compiling the VHDL File

This section explains how to set up a design library and compile inverter.vhd:

1 Verify that the file inverter.vhd is in the current directory by entering the
ls command at the ModelSim command prompt.

2 Create a design library to hold your compilation results. To create the
library and required _info file, enter the vlib and vmap commands as
follows:

ModelSim> vlib work

ModelSim> vmap work work

If the design library work already exists, ModelSim does not overwrite the
current library, but displays the following warning:

# ** Warning: (vlib-34) Library already exists at "work".

Note You must use the ModelSim File menu or vlib command to create
the library directory to ensure that the required _info file is created. Do
not create the library with operating system commands.

3 Compile the VHDL file. One way of compiling the file is to click the
filename in the project workspace and select Compile–>Compile All.
Another alternative is to specify the name of the VHDL file with the vcom
command, as follows:

ModelSim> vcom inverter.vhd

If the compilations succeed, informational messages appear in the
command window and the compiler populates the work library with the
compilation results.

3–4



Compiling the VHDL File

3–5



3 Simulink and ModelSim Tutorial

Creating the Simulink Model

Now create your Simulink model. For this tutorial, you create a simple
Simulink model that drives input into a block representing the VHDL
inverter you coded in “Developing the VHDL Code” on page 3–2 and displays
the inverted output:

1 Start MATLAB, if it is not already running.

2 Open the Simulink Library Browser.

3 Open a new model window.

4 Drag the following blocks from the Simulink Library Browser to your
model window.

• Constant block in Simulink Source library

• VHDL Cosimulation block in Link for ModelSim library

• Display block in Simulink Sink library

Arrange the three blocks as shown below:

5 Configure the Constant block, which is the model’s input source.

a Double-click the Constant block icon. The Block Parameters Constant
dialog appears.

b Type 0 in the Constant value text box. This is just an initial value.
Later you can change it to any unsigned integer in the range 0 to 255.

3–6



Creating the Simulink Model

c Click the Show additional parameters check box. The dialog expands
and displays additional options.

d Select uint8 from the Output data type mode menu. This type
specification is supported by the Link for ModelSim without the need for
a type conversion. It maps directly to the VHDL type for the VHDL port
sin, STD_LOGIC_VECTOR(7 DOWNTO 0).

e Type 10 in the Sample time text box. Later you can change it to see the
affect various sample times have on the simulation.

The dialog should now appear as follows.

f Click OK. The Block Parameters Constant dialog disappears and the
value in the Constant block icon changes to 0.

6 Configure the VHDL Cosimulation block, which represents the inverter
model written in VHDL.

a Double-click the VHDL Cosimulation block icon. The Block
Parameters Constant dialog appears.

b In the Block input ports text box, replace the sample signal pathname
/top/sig1 with /inverter/sin.

3–7



3 Simulink and ModelSim Tutorial

c In the Block output ports text box, replace the sample signal
pathnames with /inverter/sout.

The Ports pane should appear as follows.

d Click Apply.

e Click the Comm tab.

f Clear the Shared memory check box.

g In the Port number or service text box, enter socket port number 4449
or, if this port is not available on your system, another valid port number
or service name. The model will use TCP/IP socket communication to
link with ModelSim. Note what you enter for this parameter. You will
specify the same socket port information when you set up ModelSim
for linking with Simulink.

The Comm pane should appear as follows:

3–8



Creating the Simulink Model

h Click Apply.

i Click the Clocks tab.

j In the Generate rising-edge clocks text box, add the signal path
/inverter/clk.

The Clocks pane should appear as follows:

3–9



3 Simulink and ModelSim Tutorial

k Click Apply.

l Click the Tcl tab.

m In the Before simulation command text box, enter the following
Tcl command:

echo "Running inverter in Simulink!"

n In the After simulation command text box, enter

echo "Done"

The Tcl dialog panel should appear as follows:

3–10



Creating the Simulink Model

o Click Apply and then OK.

7 Connect the blocks such that the model appears as follows:

At this point, you might also want to consider adjusting block annotations.

8 Save the model.

3–11



3 Simulink and ModelSim Tutorial

Setting Up ModelSim for Use with Simulink

You now have a VHDL representation of an inverter and a Simulink model
that applies the inverter. To start ModelSim such that it is ready for use
with Simulink, enter the following command line in the MATLAB Command
Window:

vsim('socketsimulink', 4449)

Note If you entered a different socket port specification when you
configured the VHDL Cosimulation block in Simulink, replace the port
number 4449 in the preceding command line with the correct socket port
information for your model. The vsim function informs ModelSim of the
TCP/IP socket to use for establishing a communication link with your
Simulink model.

3–12



Loading Instances of the VHDL Entity for Cosimulation with Simulink

Loading Instances of the VHDL Entity for Cosimulation with
Simulink

This section explains how to use the vsimulink command to load an instance
of your VHDL entity for cosimulation with Simulink. The vsimulink
command is a Link for ModelSim variant of the ModelSim vsim command. It
is made available as part of the ModelSim configuration.

To load an instance of the inverter entity,

1 Change your input focus to the ModelSim window.

2 If necessary, change your directory to the location of your inverter.vhd
file. For example:

ModelSim> cd C:/MyPlayArea

3 Enter the following vsimulink command:

ModelSim> vsimulink work.inverter

ModelSim starts the vsim simulator such that it is ready to simulate entity
inverter in the context of your Simulink model. The ModelSim command
window display should be similar to the following.

3–13



3 Simulink and ModelSim Tutorial

Running the Simulation

This section guides you through a scenario of running and monitoring a
cosimulation session.

1 Open and add the inverter signals to a wave window by entering the
following ModelSim command:

VSIM nn> add wave /inverter/*

The following wave window appears.

2 Change your input focus to your Simulink model window.

3 Start a Simulink simulation. The value in the Display block changes to
255. Also note the changes that occur in the ModelSim wave window. You
might need to zoom in to get a better view of the signal data.

3–14



Running the Simulation

4 In the Simulink Model, change Constant value to 255, save the model,
and start another simulation. The value in the Display block changes to 0
and the ModelSim wave window is updated as follows.

5 In the Simulink Model, change Constant value to 2 and Simulation time
to 20 and start another simulation. This time, the value in the Display
block changes to 253 and the ModelSim wave window appears as follows.

3–15



3 Simulink and ModelSim Tutorial

Note the change in the sample time in the wave window.

3–16



Shutting Down the Simulation

Shutting Down the Simulation

This section explains how to shut down a simulation in an orderly way:

1 In ModelSim, stop the simulation by selecting Simulate–>End
Simulation.

2 Quit ModelSim.

3 Close the Simulink model window.

3–17



3 Simulink and ModelSim Tutorial

3–18



4

MATLAB and ModelSim
Manchester Receiver
Tutorial

This chapter guides you through the steps for setting up an M-file that runs
as a test script that applies the Link for ModelSim, MATLAB, and ModelSim
to verify a VHDL Manchester Receiver model with clock recovery capabilities.

Note To complete the tutorial, MATLAB, ModelSim, and Link for
ModelSim must be installed.

“Background on Manchester
Encoding” (p. 4–3)

Introduces you to Manchester
encoding, the subject of this tutorial.

“Setting Up Tutorial Files” (p. 4–8) Explains how to set up files for this
tutorial.

“Developing the Manchester
Receiver VHDL Code” (p. 4–9)

Guides you through the Manchester
Receiver VHDL code.

“Compiling the Manchester Receiver
VHDL Files” (p. 4–17)

Explains how to compile the
Manchester Receiver VHDL files.

“Developing the Manchester
Receiver MATLAB Functions” (p.
4–19)

Guides you through the Manchester
Receiver MATLAB function code.



4 MATLAB and ModelSim Manchester Receiver Tutorial

“Creating a Manchester Receiver
Test Bench Script” (p. 4–30)

Explains how to create a Manchester
Receiver test bench script.

“Running the Manchester Receiver
Simulation” (p. 4–40)

Explains how to start and monitor
the Manchester Receiver test script.

4–2



Background on Manchester Encoding

Background on Manchester Encoding

Transmission of digital data frequently requires some form of modulation
to overcome limits in a physical signal channel. One technique used for
modulating digital data is Manchester Encoding. This technique has the
following useful characteristics:

• The transmit clock signal can be easily extracted from the received data.

• The encoded signal never produces frequency components near DC,
regardless of the data, which is useful for transmission over channels
that require AC coupling.

• The encoding circuit is very simple and stateless.

On the negative side, Manchester Encoding requires substantial bandwidth
(above the Shannon limit), which tends to limit its usefulness in wireless
applications. However, for connected applications, such as short haul Optical
fiber and Ethernet, it is frequently a good solution.

The following sections discuss

• “The Encoding” on page 4–3

• “The Receiver” on page 4–5

• “Decoding with Inphase and Quadrature Convolution” on page 4–6

The Encoding
Manchester Encoding involves a transmitter that encodes clock and data
signals in a synchronous bit stream, such that each bit represents a signal
transition. The following table shows how each bit setting is defined for an
encoding.

4–3



4 MATLAB and ModelSim Manchester Receiver Tutorial

Bit Setting Transition Encoded Waveform

1 1 to 0

0 0 to 1

Transitions in the Manchester Encoding always occur at the center of
each clock cycle. The transition at the center is defined by the bit value.
Transitions at the edges of data periods are possible, depending on the values
of the previous and next bits. Consider the following diagram.

2 543

11 0 00

1

Clock

Data

Manchester

As the Manchester encoded signal in the diagram shows:

• The value of 1 for the first bit forces a high-to-low transition at the center
of that bit.

4–4



Background on Manchester Encoding

• The value of 0 for the second bit forces a low-to-high transition at the
center of that bit and, because the first bit transitioned from high-to-low, no
transition occurs at the start of that bit.

• The value of 0 for the third bit forces a low-to-high transition at the center
of that bit and because the second bit transitioned from low-to-high, a
high-to-low transition occurs at the start of that bit.

• The value of 1 for the fourth bit forces a high-to-low transition at the center
of that bit and, because the third bit transitioned from low-to-high, no
transition occurs at the start of that bit.

• The value of 0 for the fifth bit forces a low-to-high transition at the center
of that bit and, because the fourth bit transitioned from high-to-low, no
transition occurs at the start of that bit.

The Receiver
A device that receives the encoded bit stream is responsible for decoding the
bit stream by extracting the data from the received signal. In most cases, the
receiver must retrieve the original data stream by using the encoded signal
without any additional information about the transmit clock. This simplifies
the communications channel, but means the receiver must overcome the
following:

• Differences between the clock used to encode the signal and the clock in
the receiver, as shown in the figure below. (The highlighted component,
Manchester receiver, is the component you model in this tutorial.)

• The phase between the clocks will be arbitrary.

Data
source

...1011101... Manchester
encoder

Channel

Transmitter Receiver
Manchester

receiver
Recovered
data stream

...1011101...

Transmit
clock

Receive
clock

The Manchester receiver component validates the computations performed
by a Manchester receiver device that is modeled in VHDL and simulated
in ModelSim. Numerous approaches are available for implementing a

4–5



4 MATLAB and ModelSim Manchester Receiver Tutorial

Manchester receiver. The model for this tutorial uses a Delay Lock Loop
(DLL) that requires the receiver to use a clock that is very close in frequency
to the transmit clock. This results in a simple clock recovery circuit that
has a limited frequency lock range.

The receiver clock over-samples the received data stream at 16 times the
rate of the transmitter clock. Thus, the receiver clock must have a nominal
period of 1/16th the data period of the transmitter clock. To compensate for
minor differences between the transmitter and receiver clocks or drifts in
the channel delay, the receiver clock adjusts its data period by up to one
receive clock (+/-) per data period. Thus, the receiver clock can use 15, 16,
or 17 cycles to recover the data encoded in the incoming sampled signal.
For example, when the receiver clock is slightly faster than the transmitter
clock (frequency error), the receiver clock occasionally needs to add an extra
receive clock to compensate.

Large sudden phase errors, such as those that occur at startup time, require
multiple data periods to acquire a good lock on the signal. By limiting the
maximum phase correction to 1/16th of the total data period, the receiver can
be slow to correct large phase errors.

Decoding with Inphase and Quadrature Convolution
Decoding a received Manchester signal can occur in several ways, but the
approach taken in the model for this tutorial is to consider Manchester
Encoding as a digital phase modulation with two symbols: +180 and –180
degrees. By convolving the incoming signal with a reference inphase (I)
and quadrature (Q) waveform at the modulation frequency, it is possible
to extract the data and retrieve information about any phase errors in the
received waveform. After one data cycle, the receiver computes two values
(referred to as isum and qsum in the VHDL code), which are measurements of
the inphase and quadrature convolution values. The receiver then decodes
the values to predict

• The original transmitted data value for the cycle

• An estimate of the phase error between the incoming signal and the
receiver’s data period

4–6



Background on Manchester Encoding

A critical aspect of this design is the interpretation of the I/Q convolution
measurements. At the end of a data receive cycle, the decoder translates the
I/Q values into an estimate of the transmitted data and phase error. One way
to visualize the receiver’s condition is to plot I/Q measurements. This tutorial
presents the I/Q maps of a receiver design.

Data is considered invalid if isum and qsum are completely ambiguous about
the data value of the received waveform.

In a similar way, you can generate an I/Q mapping of the phase adjustment
value in plot format. Such a plot gives a visual representation of the decoding
block. In practice, the details of this mapping have strong impact on the
stability and performance of the Manchester receiver. In the ideal case
where the receiver is perfectly locked to the incoming waveform, the receive
cycle is 16 cycles long and the measured I/Q convolution values are easy to
interpret. However, data cycles that are 15 or 17 cycles long create some
bias in the measurement of the I/Q convolution. It is possible to customize
the I/Q measurement during these cycles, but that would increase the size
and complexity of the receiver. Instead, the data acquisition cycle is extended
or shortened with no change in decoding the resulting values. However, this
decoder bias can create problems with dithering or reduced noise immunity.
This tutorial examines these issues.

4–7



4 MATLAB and ModelSim Manchester Receiver Tutorial

Setting Up Tutorial Files

To ensure that others can access copies of the tutorial files, set up a directory
for your own tutorial work:

1 Create a directory outside the context of your MATLAB installation
directory into which you can copy the tutorial files. The tutorial in this
chapter assumes that you create the directory C:\MyPlayArea.

2 Copy the contents of the MATLABROOT/toolbox/modelsim/modelsimdemos
directory to the directory you just created.

4–8



Developing the Manchester Receiver VHDL Code

Developing the Manchester Receiver VHDL Code

The focus of this tutorial is the verification of a VHDL implementation of
a Manchester receiver. Decoding a Manchester encoded signal presents
several challenges, the most prominent of which is clock recovery. The clock
is embedded in the received signal and must be extracted to reproduce the
original data stream. The figure below shows the Manchester receiver’s model
design, which is divided into three VHDL entities.

Decoder

State
counter

I/Q
convolution

isum
qsum

Data

i_wf
q_wf

adj

Recovered
dataRaw encoded

data samples

clk/16Manchester receiver

The following table describes the three sections of code.

4–9



4 MATLAB and ModelSim Manchester Receiver Tutorial

I/Q convolver Samples the received signal and computes the
convolution for the inphase (I) and quadrature (Q)
waveforms. For each waveform, the computation is
implemented as the sum of XOR operations on the
sample and decoded waveform received from the state
counter.

Decoder Executes a combinatorial circuit that interprets the
results of the I/Q convolver.

State counter Generates the I/Q waveforms that are convolved with
received signals, taking into account phase errors (lags
and leads), as necessary. The phase of the I/Q generator
is adjusted to match the incoming Manchester encoded
waveform. To accomplish the necessary adjustment, at
the beginning of a new cycle, the state counter checks
an adjustment value, adj, and then changes the period
of the next I/Q cycle. This adjustment value is limited
to adding or removing a single clock period from the 16
periods that are nominally used for an I/Q waveform.

The following timing diagram shows an inphase waveform, quadrature
waveform, and the convolved results with no phase error, data lags, and
data leads.

4–10



Developing the Manchester Receiver VHDL Code

qsum

qsum

qsum

isum

isum

isum

8

0

6 or 7

9 or 10

1 or 2

1 or 2

Inphase waveform

Quadrature waveform

Manchester encoded �1�
Convolved I/Q with
no phase error

Manchester encoded �1�
Convolved I/Q with
data lags

Manchester encoded �1�
Convolved I/Q with
data leads

The following sections highlight areas of code in each of the three VHDL files
that are of interest for a ModelSim and MATLAB test bench. The files are
located in the modelsimdemos/vhdl/manchester directory:

• “VHDL Code for the I/Q Convolver” on page 4–11

• “VHDL Code for the Decoder ” on page 4–14

• “VHDL Code for the State Counter” on page 4–15

VHDL Code for the I/Q Convolver
After setting up a design library, typically, you would use the ModelSim Editor
to create and modify your VHDL code. For this tutorial, open and examine the
existing file iqconv.vhd. This section highlights areas of code in iqconv.vhd
that are of interest for a ModelSim and MATLAB test bench:

4–11



4 MATLAB and ModelSim Manchester Receiver Tutorial

1 Start ModelSim from MATLAB by issuing a call to the MATLAB vsim
function.

2 In ModelSim, change your current directory to the /vhdl/manchester
subdirectory you created in “Setting Up Tutorial Files” on page 4–8. If you
set up the files elsewhere, adjust the path accordingly.

ModelSim> cd C:/MyPlayArea/vhdl/manchester

3 Open iqconv.vhd in the edit window with the edit command, as follows:

ModelSim> edit iqconv.vhd

ModelSim opens its edit window and displays the VHDL code for
iqconv.vhd.

4 Search for ENTITY iqconv. This statement defines the entity iqconv.

ENTITY iqconv IS
PORT (

clk : IN std_logic ;
enable : IN std_logic ;
reset : IN std_logic ;

i_wf : IN std_logic ;
q_wf : IN std_logic ;
samp : IN std_logic ;

isum : OUT std_logic_vector(4 DOWNTO 0);
qsum : OUT std_logic_vector(4 DOWNTO 0);
)

END iqconv;

You will be verifying this entity in the MATLAB environment. Note the
following:

• The name of the entity is iqconv. The MATLAB server assumes the
default name for the corresponding MATLAB function is iqconv.

• The entity must be defined with a PORT clause that includes at least
one port definition. Each port definition must specify a port mode (IN,
OUT, or INOUT) and a VHDL data type that is supported by the Link for

4–12



Developing the Manchester Receiver VHDL Code

ModelSim interface. For a list of the supported types, see “Coding VHDL
Entities for MATLAB Verification” on page 5–3.

The entity iqconv in this example is defined with six input ports —
clk, enable, reset, i_wf, q_wf, and samp — of type STD_LOGIC and
two output ports — isum and qsum — of type STD_LOGIC_VECTOR. The
output ports pass simulation output data out to the MATLAB function
for verification. The reset, waveform, and sample data input ports
receive signals from the MATLAB function. As you will see in “MATLAB
Function for the I/Q Convolver” on page 4–19 the MATLAB function does
not use the clock signals.

Note Alternatively, the input ports can be driven with the ModelSim
force command.

For more information on coding port entities for use with MATLAB, see
Coding VHDL Entities for MATLAB Verification.

5 Browse through the rest of iqconv.vhd. The remaining code defines a
behavioral architecture for iqconv that

a Performs an XOR on the data with each of the I/Q waveforms generated
by the state counter.

b Performs the XOR operation.

c Clocks the isum and qsum into a register.

Note XOR is used here because it is the logic equivalent of multiplying
two streams of data that are encoded as -1 and +1. If you replace logic ’0’
with 1 and logic ’1’ with 0 in an XOR truth table, the result is a multiple
that is the basis of a convolution.

6 Close the ModelSim edit window.

4–13



4 MATLAB and ModelSim Manchester Receiver Tutorial

VHDL Code for the Decoder
Use the ModelSim Editor to open and examine the existing file decoder.vhd.
This section highlights areas of code in decoder.vhd that are of interest for a
ModelSim and MATLAB test bench:

1 Start ModelSim, if it is not already running, from MATLAB by issuing a
call to the MATLAB vsim function.

2 In ModelSim, change your current directory to the /vhdl/manchester
subdirectory you created in “Setting Up Tutorial Files” on page 4–8. If you
set up the files elsewhere, adjust the path accordingly.

ModelSim> cd C:/MyPlayArea/vhdl/manchester

3 Open decoder.vhd in the edit window with the edit command, as follows:

ModelSim> edit decoder.vhd

ModelSim opens its edit window and displays the VHDL code for
decoder.vhd.

4 Search for ENTITY. This statement defines the entity decoder:

ENTITY decoder IS
PORT (

isum : IN std_logic_vector(4 DOWNTO 0);
qsum : IN std_logic_vector(4 DOWNTO 0);

adj : OUT std_logic_vector (1 DOWNTO 0);
dvalid : OUT std_logic;
odata : OUT std_logic;
)

END decoder;

You will verify this entity in the MATLAB environment. Note the following:

• The name of the entity is decoder. The MATLAB server assumes the
name for the corresponding MATLAB function is decoder.

• The PORT clause for this entity, defines two input ports — isum and
qsum — and three output ports — adj, dvalid, and odata. The input
ports are 5-bit vectors of type STD_LOGIC_VECTOR that receive signals
from the MATLAB function. The output port adj is a 2-bit vector of

4–14



Developing the Manchester Receiver VHDL Code

type STD_LOGIC_VECTOR, and dvalid and odata are of type STD_LOGIC.
The output ports pass simulation output data out to the function for
verification. For more information on coding port entities for use with
MATLAB, see “Coding VHDL Entities for MATLAB Verification” on
page 5–3.

5 Browse through the rest of decoder.vhd. The remaining code defines
a behavioral architecture for decoder. The architecture models a
combinatorial circuit that translates the results of the I/Q convolver, isum
and qsum, at the end of each data receive cycle, into an estimate of the
transmitted data and phase error. An adj value of 00 indicates that the
waveforms are in phase. Values of 01 and 11 indicate a data lead or lag,
respectively.

6 Close the ModelSim edit window.

VHDL Code for the State Counter
Use the ModelSim Editor to open and examine the existing file statecnt.vhd.
This section highlights areas of code in statecnt.vhd that are of interest for a
ModelSim and MATLAB test bench:

1 Start ModelSim, if it is not already running, from MATLAB by issuing a
call to the MATLAB vsim function.

2 In ModelSim, change your current directory to the /vhdl/manchester
subdirectory you created in “Setting Up Tutorial Files” on page 4–8. If you
set up the files elsewhere, adjust the path accordingly:

ModelSim> cd C:/MyPlayArea/vhdl/manchester

3 Open statecnt.vhd in the edit window with the edit command, as follows:

ModelSim> edit statecnt.vhd

ModelSim opens its edit window and displays the VHDL code for
statecnt.vhd.

4 Search for ENTITY. This statement defines the entity statecnt:

ENTITY statecnt IS
PORT (

clk : IN std_logic ;
enable : IN std_logic ;

4–15



4 MATLAB and ModelSim Manchester Receiver Tutorial

reset : IN std_logic ;
adj : IN std_logic_vector (1 DOWNTO 0);
sync : OUT std_logic;
i_wf : OUT std_logic;
q_wf : OUT std_logic;
)

END statecnt;

You will verify this entity in the MATLAB environment. Note the following:

• The name of the entity is statecnt. The MATLAB server assumes the
name for the corresponding MATLAB function is statecnt.

• The PORT clause for this entity defines four input ports — clk, enable,
reset, and adj — and three output ports — sync, i_wf, and q_wf.
All ports except adj are of type STD_LOGIC. The input port adj is of
type STD_LOGIC_VECTOR and is significant in that it receives data rate
adjustments from the decoder that account for phase errors.

The output ports are of type STD_LOGIC. Port sync represents a data
clock that has a nominal frequency of 1/16th of the data period. The
ports i_wf and q_wf pass decoded inphase and quadrature waveforms
to the I/Q convolver where they are convolved with raw sampled
Manchester encoded data.

For more information on coding port entities for use with MATLAB, see
Coding VHDL Entities for MATLAB Verification.

5 Browse through the rest of statecnt.vhd. The remaining code defines a
behavioral architecture for statecnt. The architecture defines two signals
— state and next_state — that it uses to define a simple state machine.
Signals state and next_state are of type state_type, an enumerated type
that represents the 17 possible clock cycles. The 17th cycle accounts for
data lead phase errors. When a phase is complete, the state signal reaches
a DECODE_ME state, which triggers code that

• Applies the data rate adjustment received from the decoder

• Synchronizes the data clock with the receiver clock

• Passes the inphase and quadrature waveforms of the current phase
data to the I/Q convolver

6 Close the ModelSim edit window.

4–16



Compiling the Manchester Receiver VHDL Files

Compiling the Manchester Receiver VHDL Files

After you create or edit your VHDL source files, you compile them. As part of
this tutorial, set up a design library and compile iqconv.vhd, decoder.vhd,
and statecnt.vhd:

1 Start ModelSim, if it is not already running, from MATLAB by issuing a
call to the MATLAB vsim function.

2 Check that your current directory is set to the /vhdl/manchester
subdirectory you created in “Setting Up Tutorial Files” on page 4–8. If you
set up the files elsewhere, adjust the path accordingly.

ModelSim> cd C:/MyPlayArea/vhdl/manchester

3 Verify that the files are in the current directory by entering the ls
command.

4 Create a design library to hold your compilation results. To create the
library and required _info file, enter the vlib and vmap commands as
follows:

ModelSim> vlib work

ModelSim> vmap work work

Note You must use the ModelSim File menu or vlib command to create
the library directory to ensure that the required _info file is created. Do
not create the library with operating system commands.

5 Compile the three VHDL files. One way of compiling a file is to click the
filename in the project workspace and select Compile–>Compile All.
Another alternative is to specify the name of the VHDL file with the vcom
command, as follows:

ModelSim> vcom iqconv.vhd
ModelSim> vcom decoder.vhd
ModelSim> vcom statecnt.vhd

4–17



4 MATLAB and ModelSim Manchester Receiver Tutorial

If the compilations succeed, informational messages appear in the
command window and the compiler populates the work library with the
compilation results.

4–18



Developing the Manchester Receiver MATLAB Functions

Developing the Manchester Receiver MATLAB Functions

Link for ModelSim verifies VHDL hardware in MATLAB as a function. You
must develop a MATLAB function for each model component you need to
verify. Given that the VHDL model for the Manchester receiver consists of
three sections of VHDL code, we need three corresponding MATLAB functions:

I/Q convolver Verifies that the VHDL I/Q convolver code computes
expected output for a randomly generated stream
of samples. The MATLAB function verifies this
by computing the convolution for the inphase
and quadrature waveforms (i_wf and q_wf). The
computation is implemented as an XOR and
accumulation of the binary signals.

Decoder Displays a plot of the I/Q mapping generated by the
decoder for visual verification.

State counter Generates the inphase and quadrature waveforms.
The MATLAB test bench function has complete control
of signals applied during the simulation, including
clock generation, resets, and so on.

The following sections highlight areas of code in each of the three MATLAB
function files that are of interest for a ModelSim and MATLAB test bench.
The files are located in modelsimdemos.

• “MATLAB Function for the I/Q Convolver” on page 4–19

• “MATLAB Function for the Decoder” on page 4–23

• “MATLAB Function for the State Counter” on page 4–26

MATLAB Function for the I/Q Convolver
Typically, at this point you would create or edit a MATLAB function that
meets Link for ModelSim requirements. For this tutorial, open and examine
the existing file manchester_iqconv.m. This function

1 Disables resets, marking the start of a cycle.

2 Establishes a random cycle length of 15, 16, or 17.

4–19



4 MATLAB and ModelSim Manchester Receiver Tutorial

icycle = 15 + floor(rand*3);

3 Generates three vectors of random binary states. One vector represents a
data sample. The other two vectors represent the inphase and quadrature
waveforms of that data sample.

samp_vect = randbin(icycle);
i_wf_vect = randbin(icycle);
q_wf_vect = randbin(icycle);

4 Uses the function binary_xor to compute the sum of XOR operations on the
generated sample and I/Q waveforms and compares the results with the
isum and qsum values received from the VHDL entity. Here, computation
results produced by MATLAB are being used to verify the convolved results
produced by the VHDL model.

test_isum = binary_xor(i_wf_vect,samp_vect);
test_qsum = binary_xor(q_wf_vect,samp_vect);
if (test_isum ~= bin2dec(oport.isum')),

disp(['Failed on iteration ' num2str(iters) ',...
Expected ISUM = 'dec2bin(test_isum,5) ',...
Received ISUM = ' oport.isum']);

end
if (test_qsum ~= bin2dec(oport.qsum')),

disp(['Failed on iteration ' num2str(iters) ',...
Expected QSUM = 'dec2bin(test_qsum,5) ',...
Received QSUM = ' oport.qsum']);
end

5 Enables resets, marking the end of a cycle.

iport.reset = '1';

6 Forces the values of the test-generated sample data and I/Q waveforms onto
signals connected to the VHDL entity’s input ports, samp, i_wf, and q_wf.

iport.i_wf = i_wf_vect(icycle);
iport.q_wf = q_wf_vect(icycle);
iport.samp = samp_vect(icycle);

The rest of this section highlights areas of code in manchester_iqconv.m
required for MATLAB to verify iqconv.vhd:

4–20



Developing the Manchester Receiver MATLAB Functions

1 Start MATLAB, if it is not already running.

2 In MATLAB, change your current directory to the directory you created in
“Setting Up Tutorial Files” on page 4–8. If you set up the files elsewhere,
adjust the path accordingly:

cd C:/MyPlayArea

3 Open manchester_iqconv.m in the MATLAB Edit/Debug window.
Use the menu option File–>Open and double-click the filename
manchester_iqconv.m or enter the edit command as follows:

edit manchester_iqconv.m

4 Look at line 1. This is where you specify the MATLAB function name
and required parameters:

function [iport,tnext] = manchester_iqconv(oport,tnow,portinfo)

This function definition is significant in that it represents the entity test
bench. When coding the function definition, consider the following:

• Names the function manchester_iqconv. Because this name does not
match the name of the corresponding VHDL entity, you need to specify
the test bench name explicitly later when you register the test bench
with ModelSim.

• You must define the function with two input parameters, iport and
tnext, and three output parameters, oport, tnow, and portinfo.

iport Forces (by deposit) values onto signals connected to
input ports of the VHDL entity — reset, i_wf, q_wf,
and samp.

tnext Specifies an optional time at which the MATLAB
function is to be called back.

oport Receives signal values from the output ports of the
VHDL entity — isum and qsum — at the time specified
by tnow.

4–21



4 MATLAB and ModelSim Manchester Receiver Tutorial

tnow Receives the simulation time at which the MATLAB
function is called. By default, time is represented in
seconds.

portinfo For the first invocation of the MATLAB function (at
the start of a simulation) only, receives an array of
information that describes the ports defined for the
VHDL entity.

Note You can substitute your own names for the preceding
parameters. For example, the following function definition is valid:

function [a, b] = foo(c, d, e)

For more information on the required MATLAB function parameters, see
“Setting up Expected Parameters” on page 5–13.

• You can use the iport parameter to drive input signals instead of, or
in addition to, using other signal sources, such as ModelSim force
commands. Depending your application, you might use any combination
of input sources. However, keep in mind that if multiple sources drive
signals to a single iport, a resolution function is required for handling
signal contention.

5 Make note of the data types of ports defined for the entity under simulation.
The Link for ModelSim interface converts VHDL data types to comparable
MATLAB data types and vice versa. As you develop your MATLAB
function, you must know the types of the data that it receives from and
needs to return to ModelSim.

The entity iqconv consists of six input ports of type STD_LOGIC and two
output ports of type STD_LOGIC_VECTOR. The interface converts scalar data
of type STD_LOGIC to a character that matches the character literal for the
corresponding enumerated type. Data of type STD_LOGIC_VECTOR consists
of a column vector of characters with one bit per character.

For more information on interface data type conversions, see “Data Type
Conversions” on page 5–9.

4–22



Developing the Manchester Receiver MATLAB Functions

6 Search for iport.reset. This assignment statement marks the start of a
cycle by disabling resets.

7 Search for oport.isum. This line of code shows how the data that a
MATLAB function receives from ModelSim might be converted to a numeric
value and compared.

if (test_isum ~= bin2dec(oport.isum')),

In this case, the function receives STD_LOGIC_VECTOR data on oport.isum.
The MATLAB function bin2dec converts the bit vector to a decimal value
that can be compared to the numeric value test_isum.

Just below this area of code, the same conversion is performed for the bit
vector oport.qsum.

8 Search for iport.reset. This assignment statement marks the end of a
cycle by enabling a reset.

9 Search for iport.i_wf. This line of code and the two lines that follow
force values onto the signals connected to VHDL entity ports i_wf, q_wf,
and samp.

10 Browse through the rest of manchester_iqconv.m.

11 Close the MATLAB Edit/Debug window.

MATLAB Function for the Decoder
Open and examine the existing file manchester_decoder.m. This MATLAB
function

1 Provides a mechanism that allows you to easily reset the plot that it
generates by calling manchester_decoder directly from the MATLAB
command line with no arguments.

2 Sets up a timing parameter such that the simulator calls back the MATLAB
function every nanosecond.

tnext = tnow+1e-9;

3 Sets up the layout of the plot figure window — positioning of two subplots,
axis lines, and labels. One plot shows clock adjustments for phase errors.
The second plot shows instances of invalid data and the values of valid
data. Invalid data is data for which the clock cycle is less than 15 or

4–23



4 MATLAB and ModelSim Manchester Receiver Tutorial

greater than 17. As part of this setup, the VHDL entity’s isum and qsum
values are cleared. These actions are applied during the first callback
from ModelSim only.

4 Gets the phase error adjustment values, data valid setting, and actual
sample data values from the decoder VHDL entity.

5 For each cycle

a Plots the clock adjustment data.

• Black o indicates inphase data

• Red < indicates data leads

• Blue > indicates data lags

b Plots the instances of invalid data and values of valid data.

• Red x indicates invalid data

• Green o indicates valid and 0

• Black . indicates valid and 1

c Creates new test values for isum and qsum and drives them to the VHDL
entity.

The rest of this section highlights areas of code in manchester_decoder.m
required for MATLAB to verify decoder.vhd:

1 Start MATLAB, if it is not already running.

2 In MATLAB, change your current directory to the directory you created in
“Setting Up Tutorial Files” on page 4–8. If you set up the files elsewhere,
adjust the path accordingly:

cd C:/MyPlayArea

3 Open manchester_decoder.m in the MATLAB Edit/Debug window.
Use the menu option File–>Open and double-click the filename
manchester_iqconv.m or enter the edit command as follows:

edit manchester_decoder.m

4 Look at line 1. This line defines the name and required parameters of the
MATLAB function that is to service VHDL entity decoder:

4–24



Developing the Manchester Receiver MATLAB Functions

function [iport,tnext] = manchester_decoder(oport,tnow,portinfo)

In this case, the function definition:

• Names the function manchester_decoder. Because this name does not
match the name of the corresponding VHDL entity, you need to specify
the test bench name explicitly later when you register the test bench
with ModelSim.

• Defines the function with the required input and output parameters.
The function uses

– The iport parameter to force values onto signals connected to the
VHDL entity’s input ports isum and qsum

– The tnext parameter to register a ModelSim callback of the MATLAB
function

– The oport parameter to receive signal values from the entity’s output
ports adj, dvalid, and odata

For more information on the required MATLAB function parameters, see
“Setting up Expected Parameters” on page 5–13.

5 Make note of the data types of ports defined for the entity under simulation.

The entity decoder consists of two input ports — isum and samp — of type
STD_LOGIC_VECTOR and three output ports — adj, dvalid, and odata — of
type STD_LOGIC. The interface converts the scalar data to a character that
matches the character literal for the corresponding enumerated type. Data
of type STD_LOGIC_VECTOR is converted to a column vector of characters
with one bit per character.

For more information on interface data type conversions, see “Data Type
Conversions” on page 5–9.

6 Search for tnext =. This assignment statement registers a callback to
occur one nanosecond after the current callback.

7 Search for iport.isum. This line and the line that follows, clears the
entity’s isum and qsum values.

8 Search for adj(isum). This line of code and the line below it show how the
data that a MATLAB function receives from ModelSim might need to be
converted for use in the MATLAB environment.

4–25



4 MATLAB and ModelSim Manchester Receiver Tutorial

adj(isum) = bin2dec(oport.adj');
data(isum) = bin2dec(oport.dvalid oport.odata]);

In the first case, the function receives STD_LOGIC_VECTOR data on
oport.adj. The MATLAB function bin2dec converts the bit vector to a
decimal value that is assigned to adj(isum). The decimal value is used
later for numeric comparisons that determine how to plot the adjustment
for each qsum value.

In the next line of code, the function receives STD_LOGIC data on
oport.dvalid and oport.odata. The bin2dec function converts the bits
to a decimal value that is assigned to data(isum). This decimal value is
used later for numeric comparisons that determine how to plot the data
validity and value information for each qsum value.

9 Search for iport.isum. This line of code and similar lines below it force
values onto the signals connected to VHDL entity ports isum and qsum.
Before the values are forced, the function dec2bin converts a decimal value
to a bit vector. This is necessary because the VHDL entity defines isum and
qsum as STD_LOGIC_VECTOR data.

10 Browse through the rest of manchester_decoder.m.

11 Close the MATLAB Edit/Debug window.

MATLAB Function for the State Counter
Open and examine the existing file manchester_statecnt.m. This MATLAB
function

1 Declares persistent variables i_wf_vect, q_wf_vec, and ploti for storing
data between test bench invocations.

persistent i_wf_vect;
persistent q_wf_vect;
persistent ploti;

2 Declares the global variable testisdone. As a global variable, it can be
accessed from outside the scope of the test bench.

global testisdone;

4–26



Developing the Manchester Receiver MATLAB Functions

3 Sets up a timing parameter such that the simulator calls back the MATLAB
function every 10 nanoseconds (10e-9 seconds).

4 Sets up the layout for a plot figure window — positioning three subplots,
axis lines, and labels. The three plots show the waveforms for a long cycle,
nominal cycle, and short cycle. As part of this setup, the MATLAB function
clears the VHDL entity’s reset value, sets its enable value, and sets its
adj value to '11' (lag data).

5 Gets the VHDL entity’s inphase and quadrature waveform data.

6 For each cycle, plots the long, nominal, and short cycle waveforms.

The rest of this section highlights areas of code in manchester_statecnt.m
required for MATLAB to verify statecnt.vhd:

1 Start MATLAB, if it is not already running.

2 In MATLAB, change your current directory to the directory you created in
“Setting Up Tutorial Files” on page 4–8. If you set up the files elsewhere,
adjust the path accordingly.

cd C:/MyPlayArea

3 Open manchester_statecnt.m in the MATLAB Edit/Debug window.
Use the menu option File–>Open and double-click the filename
manchester_statecnt.m or enter the edit command as follows:

edit manchester_statecnt.m

4 Look at line 1. This line defines the name and required parameters of the
MATLAB function that is to service the entity statecnt:

function [iport,tnext] = manchester_statecnt(oport,tnow,portinfo)

In this case, the function definition:

• Names the function manchester_statecnt. Because this name does not
match the name of the corresponding VHDL entity, you need to specify
the test bench name explicitly later when you register the test bench
with ModelSim.

4–27



4 MATLAB and ModelSim Manchester Receiver Tutorial

• Defines the function with the required input and output parameters.
The function uses the

– The iport parameter to force values onto signals connected to the
VHDL entity’s input ports reset, enable, and adj

– The tnext parameter to instruct ModelSim to call back the function
every 10 nanoseconds

– The oport parameter to receive signal values from the entity’s output
ports i_wf, q_wf, and sync

– The tnow parameter to check whether the test bench is complete

For more information on the required MATLAB function parameters, see
“Setting up Expected Parameters” on page 5–13.

5 Make note of the data types of ports defined for the entity under simulation.

The entity statecnt consists of four input ports — clk, enable, reset, and
adj — and three output ports — sync, i_wf, and q_wf. All ports except adj
are of type STD_LOGIC. The interface converts the scalar data to a character
that matches the character literal for the corresponding enumerated type.
The adj port is of type STD_LOGIC_VECTOR. This data is converted to a
column vector of characters with one bit per character.

For more information on interface data type conversions, see “Data Type
Conversions” on page 5–9.

6 Search for tnext =. This assignment statement sets up a timing parameter
tnext such that the simulator calls back the MATLAB function every 10
nanoseconds.

7 Advance one line. Here, the MATLAB function uses the value of tnow or
the presence of portinfo to check for the first call from the simulator.

8 Go to the next line. This assignment statement forces the VHDL entity’s
reset signal to a cleared state.

9 Go to the next line. This assignment statement forces the VHDL entity’s
enable signal to a set state, enabling the clock.

10 Go to the next line. This assignment statement forces the VHDL entity’s
adj signal to an initial state of '11', indicating a data lag.

11 Search for tnow >. Here, the function uses the value of tnow to check
whether the test bench is done.

4–28



Developing the Manchester Receiver MATLAB Functions

12 Search for i_wf_vect. This line of code, and the line that follows get the
entity’s inphase and quadrature waveform data.

13 Go to the next line. The MATLAB function checks whether the entity’s
sync signal is set. When this signal is set, the data clock is synchronized
with the receiver clock, indicating a phase is complete.

14 Search for iport.adj. This assignment statement, and the two other
adj assignment statements that follow, force the VHDL entity’s phase
adjustment to the next possible value for the next test cycle.

15 Browse through the rest of manchester_statecnt.m.

16 Close the MATLAB Edit/Debug window.

4–29



4 MATLAB and ModelSim Manchester Receiver Tutorial

Creating a Manchester Receiver Test Bench Script

Now that you are familiar with the VHDL code and MATLAB functions and
have compiled the three VHDL files, this section shows you how to set up
an M-code script that sets up and runs the Manchester receiver test bench
simulation.

To create the test bench script, open a MATLAB Edit/Debug window and
enter M-code as instructed in the following sections:

• “Documenting the Script” on page 4–30

• “Starting the MATLAB Server from the Test Script” on page 4–31

• “Writing Script Code for the Decoder Test ” on page 4–31

• “Writing Script Code for the I/Q Convolver Test” on page 4–34

• “Writing Script Code for the State Counter Test” on page 4–36

Documenting the Script
Start writing your script by documenting at least its name and purpose. For
this tutorial, open a MATLAB Edit/Debug window, include the following
initial lines of comment code, and save the file as manchester_tb.m:

% Manchester Receiver Script
%
% This script sets up and executes tests for the
% following Manchester Receiver VHDL components:
%
% vhdl\manchester\decoder.vhd
% Models a combinatorial circuit that interprets
% the results of the inphase and quadrature
% convolution
% vhdl\manchester\iqconv.vhd
% Samples signals and computes the convolution for
% inphase and quadrature waveforms
% vhdl\manchester\statecnt.vhd
% Generates inphase and quadrature waveforms with
% received signals, taking into account phase
% errors
%

4–30



Creating a Manchester Receiver Test Bench Script

Starting the MATLAB Server from the Test Script
Start the MATLAB server as follows:

1 Add the following hdldaemon function call:

hdldaemon('socket',0)
This function call starts the server, such that it uses TCP/IP socket
communication with a socket port number identified as available by the
operating system.

2 Get the assigned port number by adding the following call to hdldaemon:

dstat = hdldaemon('status');
The 'status' argument instructs the function to return the assigned port
number. The returned value is stored in the structure dstat.

3 Assign the port number portion of dstat to a variable for future use:

portnum = dstat.ipc_id;
Both the server and client parts of an application link must use the same
port number. Thus, at some point, your script needs to forward portnum
over to ModelSim.

4 Add the following global variable definition:

global testisdone;
You will use this variable as a completion flag for each test. Because the
variable is global, it can verify the state of test bench execution.

Writing Script Code for the Decoder Test
Add the script code for the decoder test as follows:

1 Clear the testisdone flag and display informational messages that inform
users about what the test does.

testisdone = 0;
disp('========================================================');
disp('MATLAB testing Manchester Receiver component decoder.vhd...');
disp('Creates two plots of the entity''s transfer function,');
disp('providing a visualization of the decoder behavior.');

2 Set the project directory to a directory that has write access and is suitable
for holding a ModelSim project. This tutorial assumes the writable project
directory is unixprojectdir:

4–31



4 MATLAB and ModelSim Manchester Receiver Tutorial

projectdir = pwd;
3 Change the format of the project directory and decoder VHDL file

specifications to the UNIX format, which ModelSim and Tcl use, by
replacing backslashes (\) with forward slashes (/).:

% ModelSim and Tcl use the UNIX file specification format
unixprojectdir = strrep(projectdir,'\','/');
unixsrcfile = strrep(fullfile(matlabroot,'toolbox','modelsim',...
'modelsimdemos','vhdl','manchester','decoder.vhd'),'\','/');

4 Define a sequence of Tcl commands to be executed in the context of
ModelSim. Define tclcmd as follows:

tclcmd = { ['cd ' unixprojectdir ],...
'catch {wm geometry . 500x200+0+0}',...
'vlib work',...
['vcom -performdefaultbinding ' unixsrcfile],...
'vsimmatlab work.decoder',...
['matlabtb decoder -mfunc Manchester_decoder,...
-socket ' num2str(portnum)],...

'run 3000',...
'quit -f'};

The following list explains what each Tcl command does:

a The cd command changes to a writable directory.

b The wm command adjusts the placement of the ModelSim window so it
does not obscure the MATLAB Command Window. This command works
in ModelSim SE environments only.

c The vlib command creates the design library work.

d The vcom command compiles the VHDL file. The
-performdefaultbinding option enables default bindings in
the event that they have been disabled in the modelsim.ini file.

e The vsimmatlab command, a variant of the ModelSim vsim command,
loads an instance of the VHDL entity decoder for MATLAB verification.
This command is a Link for ModelSim extension to the ModelSim
command set.

f The matlabtb command initiates a MATLAB test bench session for the
loaded instance of entity decoder. This command is a Link for ModelSim
extension to the ModelSim command set. The command specifies:

4–32



Creating a Manchester Receiver Test Bench Script

• The entity instance.

• The -mfunc option, which specifies the MATLAB function that is
to test the entity (manchester_decoder.m). This option is required
because the MATLAB function name is not the same as the entity
name.

• TCP/IP socket communication with socket port portnum. For a link to
be established between ModelSim and MATLAB, the value specified
with -socket must match the socket port that was specified when the
MATLAB server (hdldaemon) was started.

g The run command starts and runs a ModelSim simulation such that it
runs for 3000 iterations of the current resolution limit. By default, the
simulation runs for 3000 nanoseconds.

h The quit command quits ModelSim. The -f option causes the command
to quit without asking for confirmation.

5 Start ModelSim for use with the Link for ModelSim with the following
call to function vsim:

vsim('startupfile','decoder.do', 'tclstart',tclcmd);
This command starts ModelSim with a Tcl command script that executes
some general-purpose startup commands and then the user-defined
commands specified with the property name/property value pair‘tclstart'
tclcmd .

The ‘startupfile' property causes vsim to write the entire startup Tcl
command script to decoder.do for future reference or use.

6 Add the following lines of code to display informational messages and wait
for manchester_decoder.m to run to completion:

disp('Waiting for testing of ''decoder.vhd'' to complete...');
disp('Flag from manchester_decoder.m indicates completion...');
while testisdone == 0,

pause(0.001);
end
pause(1);
disp('MATLAB test of decoder.vhd is complete. Check the');
disp('generated plot for results.');
disp('Press any key to continue to the next test.');
pause;

4–33



4 MATLAB and ModelSim Manchester Receiver Tutorial

Writing Script Code for the I/Q Convolver Test
Add the script code for the I/Q convolver test as follows:

1 Clear the testisdone flag and display informational messages that inform
users about what the test does:

testisdone = 0;
disp('====================================================');
disp('MATLAB testing Manchester Receiver component iqconv.vhd...');
disp('Checks isum and qsum output for a randomly generated');
disp('stream of data samples.');

2 Set the project directory to a directory that has write access and is suitable
for holding a ModelSim project. This tutorial assumes the writable project
directory is unixprojectdir:

projectdir = pwd;
3 Change the format of the project directory and I/Q convolver VHDL

file specifications to the UNIX format, which ModelSim and Tcl use, by
replacing backslashes (\) with forward slashes (/):

% ModelSim and Tcl use the UNIX file specification format
unixprojectdir = strrep(projectdir,'\','/');
unixsrcfile = strrep(fullfile(matlabroot,'toolbox','modelsim',...
'modelsimdemos','vhdl','manchester','iqconv.vhd'),'\','/');

4 Define a sequence of Tcl commands to be executed in the context of
ModelSim. Define tclcmd as follows:

tclcmd = { ['cd ' unixprojectdir ],...
'catch {wm geometry . 500x200+0+0}',...
'vlib work',...
['vcom -performdefaultbinding ' unixsrcfile],...
'vsimmatlab work.iqconv',...
'force /iqconv/clk 1 0, 0 5 ns -repeat 10 ns ',...
'force /iqconv/enable 1',...
'force /iqconv/reset 1',...
'run 100',...
['matlabtb iqconv -rising /iqconv/clk -mfunc,...
Manchester_iqconv -socket ' num2str(portnum)],...
'run 1000',...
'quit -f'};

The following list explains what each Tcl command does:

4–34



Creating a Manchester Receiver Test Bench Script

a The cd command changes to the writable UNIX style project directory.

b The wm command adjusts the placement of the ModelSim window so
it does not obscure the MATLAB window. This command works in
ModelSim SE environments only.

c The vlib command creates the design library work.

d The vcom command compiles the VHDL file. The
-performdefaultbinding option enables default bindings in
the event that they have been disabled in the modelsim.ini file.

e The vsimmatlab command loads an instance of the VHDL entity iqconv
for MATLAB verification. This command is a Link for ModelSim
extension to the ModelSim command set.

f The force commands drive the entity’s clk, enable, and reset signals,
which get passed on to the test bench as oport data. The first force
command sets clk at time equals 0, clears it after 5 nanoseconds, and
repeats the high-to-low cycle every 10 nanoseconds. The second and
third force commands set the enable and reset signals.

g The run command starts and runs the ModelSim simulation for 100
iterations of the current limit. By default, the simulation runs for 100
nanoseconds. This accounts for the startup phase.

h The matlabtb command initiates a MATLAB test bench session for the
loaded instance of entity iqconv. This command is a Link for ModelSim
extension to the ModelSim command set. The command specifies

• The entity instance iqconv.

• The -rising option, which triggers an invocation of the MATLAB
function when clk experiences a rising edge.

• The -mfunc option, which specifies the MATLAB function that is
to test the entity (manchester_iqconv.m). This option is required
because the MATLAB function name is not the same as the entity
name.

• TCP/IP socket communication with socket port portnum. For a link to
be established between ModelSim and MATLAB, the value specified
with -socket must match the socket port that was specified when the
MATLAB server (hdldaemon) was started.

4–35



4 MATLAB and ModelSim Manchester Receiver Tutorial

i The run command starts runs the ModelSim simulation for 1000
iterations of the current resolution limit. By default, the simulation
runs for 1000 nanoseconds.

j The quit command quits ModelSim. The -f option causes the command
to quit without asking for confirmation.

5 Start ModelSim for use with the Link for ModelSim with the following
call to function vsim:

vsim ('startupfile','iqconv.do', 'tclstart',tclcmd);
This command starts ModelSim with a Tcl command script that executes
some general-purpose startup commands and then the user-defined
commands specified with the property-value pair'tclstart' tclcmd .

The 'startupfile' property causes vsim to write the entire startup Tcl
command script to iqconv.do for future reference or use.

6 Add the following lines of code to display informational messages and wait
for manchester_iqconv.m to run to completion:

while testisdone == 0,
pause(0.001);

end
pause(1);
disp('MATLAB test of iqconv.vhd is complete.');
disp('If the test fails, an error message is displayed.');
disp('Press any key to continue to the next test.');
pause;

Writing Script Code for the State Counter Test
Add the script code for the state counter test as follows:

1 Clear the testisdone flag and display informational messages that inform
users about what the test does.

testisdone = 0;
disp('====================================================');
disp('MATLAB testing Manchester Receiver component statecnt.vhd...');
disp('Creates and checks isum and qsum outputs for a randomly');
disp('generated stream of data samples.');

2 Set the project directory to a directory that has write access and is suitable
for holding a ModelSim project. This tutorial assumes the writable project
directory is unixprojectdir.

4–36



Creating a Manchester Receiver Test Bench Script

projectdir = pwd;
3 Change the format of the project directory and state counter VHDL file

specifications to the UNIX format, which ModelSim and Tcl use, by
replacing backslashes (\) with forward slashes (/).

% ModelSim and Tcl use the UNIX file specification format
unixprojectdir = strrep(projectdir,'\','/');
unixsrcfile = strrep(fullfile(matlabroot,'toolbox','modelsim',...
'modelsimdemos','vhdl','manchester','iqconv.vhd'),'\','/');

4 Define a sequence of Tcl commands to be executed in the context of
ModelSim. Define tclcmd as

tclcmd = { ['cd ' unixprojectdir ],...
'catch {wm geometry . 500x200+0+0}',...
'vlib work',...
['vcom -performdefaultbinding ' unixsrcfile],...
'vsimmatlab -t 1ns work.statecnt ',...
'force /statecnt/clk 1 0, 0 5 ns -repeat 10 ns ',...
['matlabtb statecnt -mfunc Manchester_statecnt,...
-socket ' num2str(portnum)],...
'run 30000',...
'quit -f'};

The following list explains what each Tcl command does:

a The cd command changes to the writable UNIX style project directory.

b The wm command adjusts the placement of the ModelSim window so
it does not obscure the MATLAB window. This command works in
ModelSim SE environments only.

c The vlib command creates the design library work.

d The vcom command compiles the VHDL file. The
-performdefaultbinding option enables default bindings in
the event that they have been disabled in the modelsim.ini file.

e The vsimmatlab command loads an instance of the VHDL entity
statecnt for MATLAB verification. This command is a Link for
ModelSim extension to the ModelSim command set. The -t option
specifies a ModelSim simulator time resolution of 1 nanosecond (the
default).

f The force command drives the entity’s clk signal, which gets passed
on to the test bench as oport data. The command specifies that clk be

4–37



4 MATLAB and ModelSim Manchester Receiver Tutorial

set at time equals 0, cleared after 0 after 5 nanoseconds, and that the
high-to-low cycle be repeated every 10 nanoseconds.

g The matlabtb command initiates a MATLAB test bench session for
the loaded instance of entity statecnt. This command is a Link for
ModelSim extension to the ModelSim command set. The command
specifies

• The entity instance statecnt.

• The -mfunc option, which specifies the MATLAB function that is
to test the entity (manchester_statecn.m). This option is required
because the MATLAB function name is not the same as the entity
name.

• TCP/IP socket communication with socket port portnum. For a link to
be established between ModelSim and MATLAB, the value specified
with -socket must match the socket port that was specified when the
MATLAB server (hdldaemon) was started.

h The run command starts and runs the ModelSim simulation for 30000
iterations of the current resolution limit. By default, the simulation
runs for 30000 nanoseconds.

i The quit command quits ModelSim. The -f option causes the command
to quit without asking for confirmation.

5 Start ModelSim for use with the Link for ModelSim with the following
call to function vsim:

vsim ('startupfile','statecnt.do', 'tclstart',tclcmd);
This command starts ModelSim with a Tcl command script that executes
some general-purpose startup commands and then the user-defined
commands specified with the property-value pair‘tclstart' tclcmd.

The ‘startupfile' property causes vsim to write the entire startup Tcl
command script to statecnt.do for future reference or use.

6 Add the following lines of code to display informational messages and wait
for manchester_statecnt.m to run to completion:

while testisdone == 0,
pause(0.001);

end
pause(1);

4–38



Creating a Manchester Receiver Test Bench Script

disp('MATLAB test of statecnt.vhd is complete. Check the');
disp('generated plot for results.');
disp('Press any key to exit test script.');
pause;

7 Save the test script file as manchester_tb.m and close the Edit/Debug
window.

4–39



4 MATLAB and ModelSim Manchester Receiver Tutorial

Running the Manchester Receiver Simulation

This section explains how to start and monitor the Manchester Receiver
simulation:

1 Start MATLAB, if it is not already running.

2 At the MATLAB command prompt, enter the following command:

manchester_tb

This command starts the Manchester Receiver test script that you created
in “Creating a Manchester Receiver Test Bench Script” on page 4–30.
The following informational messages appear in the MATLAB Command
Window:

MATLAB testing Manchester Receiver component decoder.vhd...
Creates two plots of the entity's transfer function
providing a visualization of the decoder behavior.

HDLDaemon socket server is running on port 4449 with 0 connections

Waiting for testing of 'decoder.vhd' to complete
(flag from manchester_decoder.m indicates completion)

Note If the server was already running, the HDLDaemon message informs
you that the existing connection is disconnected and that a new connection
has been established.

3 The following figure window appears.

4–40



Running the Manchester Receiver Simulation

4 The decoder test then displays the following message in the MATLAB
Command Window:

MATLAB test of decoder.vhd is complete. Check the
generated plot for results.
Press any key to continue to the next test.

5 With the input focus in the MATLAB Command Window, press any key
on the keyboard. The test script starts the I/Q convolver test and displays
the following:

MATLAB testing Manchester Receiver component iqconv.vhd...
Checks isum and qsum output for a randomly generated
stream of data samples.

MATLAB test of iqconv.vhd is complete.

4–41



4 MATLAB and ModelSim Manchester Receiver Tutorial

If the test fails, an error message is displayed.');
Press any key to continue to the next test.

6 With the input focus in the MATLAB Command Window, press any key
on the keyboard. The test script starts the state counter test and displays
the following:

MATLAB testing Manchester Receiver component statecnt.vhd...
Creates and checks isum and qsum outputs for a randomly
generated stream of data samples.

7 The following figure window appears.

8 The state counter test then displays the following message in the MATLAB
Command Window:

4–42



Running the Manchester Receiver Simulation

MATLAB test of statecnt.vhd is complete. Check the
generated plot for results.
Press any key to exit the test script.

9 With the input focus in the MATLAB Command Window, press any key on
the keyboard. The MATLAB prompt reappears.

4–43



4 MATLAB and ModelSim Manchester Receiver Tutorial

4–44



5

Coding a Link for ModelSim
MATLAB Application

The Link for ModelSim provides an interface for verifying and visualizing
ModelSim VHDL models within the MATLAB environment. To apply the
interface, you need to code a VHDL model and a MATLAB function such that
they can share data. This chapter explains what you need to do with respect
to coding each of these components:

“Overview” (p. 5–2) Provides an overview of the steps
involved with coding a Link for
ModelSim MATLAB application.

“Coding VHDL Entities for MATLAB
Verification” (p. 5–3)

Explains how to code a VHDL
entity to be verified in the MATLAB
environment.

“Compiling and Debugging the
VHDL Model” (p. 5–7)

Explains how to compile a VHDL
design.

“Coding a MATLAB Test Bench
Function” (p. 5–8)

Explains how to code a MATLAB
function to verify or visualize a
VHDL entity.

“Placing a MATLAB Test Bench
Function on the MATLAB Search
Path” (p. 5–28)

Explains how to place a MATLAB
function on the MATLAB search
path.



5 Coding a Link for ModelSim MATLAB Application

Overview

This section provides an overview of the steps required to develop a VHDL
model for use with the MATLAB component of the Link for ModelSim. To
program the VHDL component of a Link for ModelSim application, do the
following:

1 Code the VHDL model for MATLAB verification

2 Compile and debug the VHDL model

3 Code the test bench MATLAB functions

4 Place the MATLAB functions on the MATLAB search path

5–2



Coding VHDL Entities for MATLAB Verification

Coding VHDL Entities for MATLAB Verification

The most basic element of communication in the Link for ModelSim interface
is the VHDL entity. The interface passes all data between ModelSim and
MATLAB as port data. The Link for ModelSim works with any existing VHDL
entity. However, when coding a VHDL entity that is targeted for MATLAB
verification, you should consider its name, the types of data to be shared
between the two environments, and the direction modes. The following
sections cover these topics:

• “Overview of the Steps for Coding VHDL Entities” on page 5–3

• “Choosing an Entity Name” on page 5–3

• “Specifying Ports for the Entity” on page 5–4

• “Specifying Port Direction Modes” on page 5–4

• “Specifying Port Data Types” on page 5–5

• “Sample VHDL Entity Definition” on page 5–5

Overview of the Steps for Coding VHDL Entities
To code a VHDL entity for verification in the MATLAB environment,

1 Consider choosing an entity name that can be used as a valid MATLAB
function name.

2 Determine the number of ports required and name them.

3 Specify a direction mode for each port.

4 Specify a VHDL data type that is supported by the Link for ModelSim
interface for each port.

5 Compile the model.

The following sections provide more detail on the preceding steps.

Choosing an Entity Name
Although not required, when naming the VHDL entity, consider choosing a
name that also can be used as a MATLAB function name. (Generally, naming
rules for VHDL and MATLAB are compatible.) By default, the Link for

5–3



5 Coding a Link for ModelSim MATLAB Application

ModelSim interface assumes that a VHDL entity and its simulation function
share the same name.

For example, if you name a VHDL entity decoder, the Link for ModelSim
interface assumes the corresponding MATLAB function is decoder in file
decoder.m. If the entity and function names do not match, you must specify
the MATLAB function name explicitly when you initialize a test bench session
with the ModelSim matlabtb or matlabtbeval command.

Note VHDL is not case sensitive and ignores mixing of uppercase and
lowercase characters in names.

For details on MATLAB function-naming guidelines, see “MATLAB
Programming Tips” on files and filenames in the MATLAB documentation.

Specifying Ports for the Entity
Determine the number of ports required for the entity to be simulated and
tested and name them within the PORT clause. Within the PORT clause, you
can group ports that share the same direction mode or type.

Specifying Port Direction Modes
In your entity statement, you must specify each port with a direction mode,
IN, OUT, or INOUT. The following table defines the three modes:

Use Mode... For Ports that...

IN Represent signals that can be driven by a MATLAB
function

OUT Represent signal values that are passed to a MATLAB
function

INOUT Represent signals that can be driven by or pass values to
a MATLAB function

5–4



Coding VHDL Entities for MATLAB Verification

Specifying Port Data Types
In your entity statement, you must define each port, which you plan to test
with MATLAB, with a VHDL data type that is supported by the Link for
ModelSim interface. The interface can convert scalar and composite data of
the following VHDL types to comparable MATLAB types:

• STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR,
and BIT_VECTOR

• INTEGER and NATURAL

• REAL

• TIME

• Enumerated types, including user-defined enumerated types and
CHARACTER

The interface also supports all subtypes and arrays of the preceding types.

Note If you use unsupported types, Link for ModelSim issues a warning
and ignores the port at runtime. For example, if you define your interface
with five ports, one of which is an access port, at runtime the interface
displays a warning and your M-code sees only four ports.

For details on how Link for ModelSim converts data types for the MATLAB
environment, see “Data Type Conversions” on page 5–9.

Sample VHDL Entity Definition
The sample VHDL code fragment below defines the entity decoder. By
default, the entity is exercised by MATLAB test bench function decoder.

The keyword PORT marks the start of the entity’s port clause, which defines
two IN ports — isum and qsum — and three OUT ports — adj, dvalid, and
odata. The output ports drive signals to MATLAB function input ports for
processing. The input ports receive signals from the MATLAB function
output ports.

5–5



5 Coding a Link for ModelSim MATLAB Application

Both input ports are defined as vectors consisting of five standard logic
values. The output port adj is also defined as a standard logic vector, but
consists of only two values. The output ports dvalid and odata are defined as
scalar standard logic ports. For information on how the Link for ModelSim
interface converts data of standard logic scalar and composite types for use in
the MATLAB environment, see “Data Type Conversions” on page 5–9.

ENTITY decoder IS
PORT (

isum : IN std_logic_vector(4 DOWNTO 0);
qsum : IN std_logic_vector(4 DOWNTO 0);
adj : OUT std_logic_vector(1 DOWNTO 0);
dvalid : OUT std_logic;
odata : OUT std_logic);

END decoder ;

5–6



Compiling and Debugging the VHDL Model

Compiling and Debugging the VHDL Model

After you create or edit your VHDL source files, use the ModelSim compiler
to compile and debug the code. You have the option of invoking the compiler
from menus in the ModelSim graphic interface or from the command line with
the vcom command. The following sequence of ModelSim commands create
and map design library work and compile the VHDL file modsimrand.vhd.

ModelSim> vlib work
ModelSim> vmap work work
ModelSim> vcom modsimrand.vhd

For more examples, see the Link for ModelSim tutorials. For details on using
the ModelSim compiler, see the ModelSim documentation.

5–7



5 Coding a Link for ModelSim MATLAB Application

Coding a MATLAB Test Bench Function

When coding a MATLAB function that is to verify or visualize a VHDL model,
you must adhere to specific coding conventions, understand the data type
conversions that occur, and program data type conversions for operating on
data and returning data to ModelSim. The following sections cover these
topics:

• “Overview of the Steps for Coding a MATLAB Test Bench Function” on
page 5–8

• “Data Type Conversions” on page 5–9

• “Naming a MATLAB Test Bench Function” on page 5–13

• “Setting up Expected Parameters” on page 5–13

• “Gaining Access to and Applying Port Information” on page 5–15

• “Converting Data for Manipulation” on page 5–17

• “Converting Data for Return to ModelSim” on page 5–18

• “Sample MATLAB Test Bench Function” on page 5–22

Overview of the Steps for Coding a MATLAB Test Bench
Function
To code a MATLAB function that is to verify or visualize a VHDL model,

1 Understand how the Link for ModelSim interface converts entity data for
use in the MATLAB environment.

2 Consider naming the MATLAB function with the name of the VHDL entity
the function is to test.

3 Define expected parameters in the function definition line.

4 Determine the types of port data being passed into the function.

5 Extract and, if appropriate for the simulation, apply information received
in the portinfo structure.

6 Convert data for manipulation in the MATLAB environment, as necessary.

7 Convert data that needs to be returned to ModelSim.

5–8



Coding a MATLAB Test Bench Function

The following figure shows these steps in a flow diagram.

No

Yes

Understand
Type Conversions

?

Done

M-Function
Name Same As

Entity Name
?

Review Interface Conversions

Name the M-FunctionNo

Define M-Function Parameters
Yes

Need to
Convert oport

Data
?

Yes Convert Data for MATLAB

No

Need to
Convert iport

Data
?

Yes
Convert Data for ModelSim

No

Figure 5–1: Coding a MATLAB Test Bench Function

Data Type Conversions
The Link for ModelSim interface converts VHDL entity data to types that
apply in the MATLAB environment. To program a MATLAB function for a
VHDL model, you must understand the type conversions that pertain to your
application. You need to know what type of data is being passed into the
function so you know:

• What types of conversions are required before and after data is manipulated

• What types of conversions are required to return data to ModelSim

5–9



5 Coding a Link for ModelSim MATLAB Application

The following table summarizes how the Link for ModelSim converts
supported VHDL data types to MATLAB types based on whether the type is
scalar and composite.

Note Internally, MATLAB indexes array elements by using a column-major
numbering scheme, starting with column 1. That is, MATLAB internally
stores data elements from the first column first, the second column second,
and so on through the last column. This tends to reverse the order of indexes
between MATLAB and VHDL. Consider the following VHDL port definition:

PORT (
sta : OUT ARRAY(1 TO 2) OF BIT_VECTOR(1 TO 8););

In VHDL, to access the second element in the seventh column, you specify

sta(2)(7) <= '1'

The MATLAB array indexing equivalent is

iport.sta(7,2) = '1';

Also, VHDL arrays are commonly defined as (0 to n) or (n DOWNTO 0). In such
cases, an offset of 1 is applied because MATLAB array indexing always
begins at 1.

5–10



Coding a MATLAB Test Bench Function

VHDL-to-MATLAB Data Type Conversions

VHDL Types... As Scalar Converts
to...

As Composite Converts
to...

STD_LOGIC, STD_ULOGIC,
and BIT

A character that
matches the character
literal for the desired
logic state.

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED,
and UNSIGNED

A column vector of
characters (as defined
above) with one bit per
character.

Arrays of
STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED,
and UNSIGNED

An array of characters
(as defined above) with a
size that is equivalent to
the VHDL port size.

INTEGER and NATURAL Type int32. Arrays of type int32 with
a size that is equivalent
to the VHDL port size.

REAL Type double. Arrays of type double
with a size that is
equivalent to the VHDL
port size.

5–11



5 Coding a Link for ModelSim MATLAB Application

VHDL Types... As Scalar Converts
to...

As Composite Converts
to...

TIME Type double for time
values in seconds
and type int64 for
values representing
simulator time
increments (see
the description of
the 'time' option
in “Starting the
MATLAB Server”
on page 6–7).

Arrays of type double or
int64 with a size that is
equivalent to the VHDL
port size.

Enumerated types Character array
(string) that contains
the MATLAB
representation of
a VHDL label or
character literal. For
example, the label
high converts to 'high'
and the character
literal 'c' converts to
'''c'''.

Cell array of strings with
each element equal to
a label for the defined
enumerated type. Each
element is the MATLAB
representation of a
VHDL label or character
literal. For example,
the vector (one, '2',
three) converts to
the column vector
['one'; '''2'''; 'three']. A
user-defined enumerated
type that contains only
character literals,
converts to a vector
or array of characters
as indicated for the
types STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED.

5–12



Coding a MATLAB Test Bench Function

Naming a MATLAB Test Bench Function
You can name and specify a MATLAB test bench function however you like, so
long as you adhere to MATLAB function and file naming guidelines. However,
keep in mind that by default the Link for ModelSim interface assumes the
name for a MATLAB function matches the name of the VHDL entity that
the function verifies or visualizes. For example, if you name the VHDL
entity mystdlogic, Link for ModelSim assumes the corresponding MATLAB
function is mystdlogic and resides in the file mystdlogic.m. This feature
eliminates the need for you to specify the MATLAB function explicitly in
commands that initialize ModelSim for test bench sessions and can simplify
the documentation and tracking for a VHDL project.

Note VHDL is not case sensitive and converts names that include a mix
of lower- and uppercase characters.

For details on MATLAB function naming guidelines, see “MATLAB
Programming Tips” on files and filenames in the MATLAB documentation.

Setting up Expected Parameters
The Link for ModelSim interface expects a MATLAB test bench function to be
defined with the following function definition line:

function [iport, tnext] = MyFunctionName(oport, tnow, portinfo)

The data that gets passed into the function through the output parameters
is defined by the structure of the corresponding VHDL entity. The following
table explains the purpose of each parameter:

5–13



5 Coding a Link for ModelSim MATLAB Application

Parameter Purpose

iport Structure that forces (by deposit) values onto signals connected
to ports of the associated VHDL entity.

tnext Specifies an optional time at which the MATLAB function is
to be called back. If you leave this parameter unassigned or
if you assign it an empty value ([]), no new entries are added
to the simulation schedule. By default, time is represented
in seconds. The interface accepts 64–bit integers, which are
interpreted as multiples of the ModelSim resolution limit.

oport Structure that receives VHDL signal values from the output
ports defined for the associated VHDL entity at the time
specified by tnow.

tnow Receives the simulation time at which the MATLAB function
is called. By default, time is represented in seconds. The
interface also supports full 64–bit time resolution. For more
information see “Starting the MATLAB Server” on page 6–7.

portinfo For the first invocation of the function (at the start of the
simulation) only, receives an array of information that
describes the ports defined for the associated VHDL entity.
For each port, the array identifies information such as the
port’s type, direction, and size. The information passed to this
parameter is useful for validating the entity under test. You
might also consider using the port information to create a
generic MATLAB function that operates differently depending
on the port information supplied at startup.

Note You can substitute your own names for the preceding parameters.
For example, the following function definition is valid:

function [a, b] = foo(c, d, e)

For more information on using tnext and tnow for simulation scheduling, see
“Deciding on Test Bench Scheduling Options” on page 6–13 and “Controlling
Callback Timing from a MATLAB Test Bench Function” on page 6–14. For an
example of how to use these parameters, see “Sample MATLAB Test Bench

5–14



Coding a MATLAB Test Bench Function

Function” on page 5–22. For more information on port data, see “Gaining
Access to and Applying Port Information” on page 5–15.

Gaining Access to and Applying Port Information
The Link for ModelSim interface passes information about the entity under
test as the third parameter, portinfo, in the first call to your MATLAB
function. The information passed to this parameter is useful for validating the
entity under simulation. You might also consider using the port information
to create a generic MATLAB function that operates differently depending on
the port information supplied at startup. The information is supplied in three
fields, as indicated below, and the content of those fields depends on the type
of ports defined for the VHDL entity.

portinfo.field1.field2.field3

The following table lists possible values for each field and identifies the port
types for which the values apply.

5–15



5 Coding a Link for ModelSim MATLAB Application

VHDL Port Information

Field... Can
Contain...

Which... And Applies to...

in Indicates the port is an
input port

All port types

out Indicates the port is an
output port

All port types

inout Indicates the port is an
input and output port

All port types

field1

tscale Indicates the simulator
resolution limit in
seconds as specified
in ModelSim (see the
ModelSim SE User’s
Manual & Command
Reference)

All types

field2 portname Is the name of the port All port types

type Identifies whether the
port is of type integer,
real, time, or enum

All port types

right The VHDL RIGHT
attribute

All port types

left The VHDL LEFT
attribute

All port types

size The size of the matrix
containing the data

All port types

field3

label A character literal or
label

Enumerated types,
including predefined
types BIT, STD_LOGIC,
STD_ULOGIC,
BIT_VECTOR, and
STD_LOGIC_VECTOR

5–16

http://jason.sdsu.edu/modelsim/se_html/manual_html/c_intro.html


Coding a MATLAB Test Bench Function

To use portinfo in your MATLAB function to verify port data, do the
following:

1 Check whether portinfo data has been passed with a call to the MATLAB
function nargin. For example:

if(nargin == 3),

2 If data has been passed, you can then verify it. Is the data what was
expected? The following code fragment checks whether the resolution
limit for time has been set to 1 ns:

.

.

.
tscale = portinfo.tscale;
if abs(tscale - 1e-9) > eps,
error('This test requires a resolution limit of 1 ns');
end

Converting Data for Manipulation
Depending on how your simulation MATLAB function uses the data it
receives from ModelSim, the function may need to convert data to a different
type before manipulating it. The following table lists circumstances under
which such conversions are required.

Required Data Conversions

If the Function Needs
To...

Then...

Compute numeric data
that is received as a type
other than double

Use the double function to convert the data to
type double before performing the computation.
For example:

datas(inc+1) = double(idata);

5–17



5 Coding a Link for ModelSim MATLAB Application

If the Function Needs
To...

Then...

Convert a standard
logic or bit vector to an
unsigned integer

Use the bin2dec function to convert the data to
an unsigned decimal value. For example:

uval = bin2dec(oport.val')

This example assumes the standard logic vector
is composed of the character literals '1' and '0'
only. These are the only two values that can be
converted to an integer equivalent.

Convert a standard logic
or bit vector to a signed
integer

Use the following application of the bin2dec
function to convert the data to a signed decimal
value. For example:

suval =
bin2dec(oport.val')-2^length(oport.val);

This example assumes the standard logic vector
is composed of the character literals '1' and '0'
only. These are the only two values that can be
converted to an integer equivalent.

Test port values of
type STD_LOGIC and
STD_LOGIC_VECTOR

Use the all function as follows:

all(oport.val == '1' | oport.val
== '0')

This example returns True if all elements are
'1' or '0'.

Converting Data for Return to ModelSim
If your simulation MATLAB function needs to return data to ModelSim, it
may be necessary for you to first convert the data to a type supported by the
Link for ModelSim interface. The following table lists circumstances under
which such conversions are required.

5–18



Coding a MATLAB Test Bench Function

Conversions for ModelSim

To Return Data to an
IN Port of Type...

Then...

STD_LOGIC,
STD_ULOGIC, or BIT

Declare the data as a character that matches the
character literal for the desired logic state. For
STD_LOGIC and STD_ULOGIC, the character can
be 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', or '-'. For BIT, the
character can be '0' or '1'. For example:

iport.s1 = 'X'; %STD_LOGIC
iport.bit = '1'; %BIT

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED,
or UNSIGNED

Declare the data as a column vector or row vector
of characters (as defined above) with one bit per
character. For example:

iport.s1v = 'X10ZZ'; %STD_LOGIC_VECTOR
iport.bitv = '10100'; %BIT_VECTOR
iport.uns = dec2bin(10,8); %UNSIGNED, 8 bits

5–19



5 Coding a Link for ModelSim MATLAB Application

To Return Data to an
IN Port of Type...

Then...

Array of
STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED,
or UNSIGNED

Declare the data as an array of type character with
a size that is equivalent to the VHDL port size.
Keep in mind that MATLAB uses a column-major
numbering scheme to represent data elements
internally and begins at 1. That means that
MATLAB internally stores data elements from the
first column first, then data elements from the
second column second, and so on through the last
column. For example:VHDL array indexing

PORT (
sta : OUT ARRAY(1 TO 2) OF
BIT_VECTOR(1 TO 8););
.
.
.
sta(2)(7) <= '1'

MATLAB equivalent array indexing

iport.sta(7,2) = '1';

INTEGER or NATURAL Declare the data as an array of type int32 with
a size that is equivalent to the VHDL array size.
Alternatively, convert the data to an array of type
int32 with the MATLAB int32 function before
returning it. Be sure to limit the data to values
with the range of the VHDL type. If necessary,
check the right and left fields of the portinfo
structure. For example:

iport.int = int32(1:10)';

5–20



Coding a MATLAB Test Bench Function

To Return Data to an
IN Port of Type...

Then...

REAL Declare the data as an array of type double with a
size that is equivalent to the VHDL port size. For
example:

iport.dbl = ones(2,2);

TIME Declare a VHDL TIME value as time in seconds,
using type double, or as an integer of simulator
time increments, using type int64. You can use the
two formats interchangeably and what you specify
does not depend on the hdldaemon 'time' option
(see “Starting the MATLAB Server” on page 6–7),
which applies to IN ports only. Declare an array of
TIME values by using a MATLAB array of identical
size and shape. All elements of a given port are
restricted to time in seconds (type double) or
simulator increments (type int64), but otherwise
you can mix the formats. For example:

iport.t1 = int64(1:10)'; %Simulator time
%increments

iport.t2 = 1e-9; %1 nsec

5–21



5 Coding a Link for ModelSim MATLAB Application

To Return Data to an
IN Port of Type...

Then...

Enumerated types Declare the data as a string for scalar ports or
a cell array of strings for array ports with each
element equal to a label for the defined enumerated
type. The 'label' field of the portinfo structure
lists all valid labels (see “Gaining Access to and
Applying Port Information” on page 5–15). Except
for character literals, labels are not case sensitive.
In general, you should specify character literals
completely, including the single quotes, as shown
in the first example below.

iport.char = {'''A''', '''B'''}; %Character
%literal

iport.udef = 'mylabel'; %User-defined label

Character array for
standard logic or bit
representation

Use the dec2bin function to convert the integer.
For example:

oport.slva =dec2bin([23 99],8)';

This example converts two integers to a 2-element
array of standard logic vectors consisting of eight
bits.

Sample MATLAB Test Bench Function
This section uses a sample MATLAB function to identify sections of a
MATLAB test bench function required by the Link for ModelSim interface.
The VHDL entity and MATLAB function code are drawn from the decoder
portion of the product’s Manchester Receiver demo. For the complete VHDL
and M-code listings see the following:

MATLABROOT\toolbox\modelsim\modelsimdemos\vhdl\manchester\decoder.vhd
MATLABROOT\toolbox\modelsim\modelsimdemos\manchester_decoder.m

5–22



Coding a MATLAB Test Bench Function

The first step to coding a MATLAB test bench function is to understand
how the data modeled in the VHDL entity maps to data in the MATLAB
environment. The VHDL entity decoder is defined as follows:

ENTITY decoder IS
PORT (

isum : IN std_logic_vector(4 DOWNTO 0);
qsum : IN std_logic_vector(4 DOWNTO 0);
adj : OUT std_logic_vector(1 DOWNTO 0);
dvalid : OUT std_logic;
odata : OUT std_logic
);

END decoder ;

The following program listing highlights key lines of code in the definition
of the manchester_decoder MATLAB function. The discussion that follows
the listing describes the code in detail. The numeric callouts correspond to
some of the items in that discussion.

1
function [iport,tnext] = manchester_decoder(oport,tnow,portinfo)
.
.
.

3
tnext = tnow+1e-9;
.
.
.

5–23



5 Coding a Link for ModelSim MATLAB Application

4
%% Compute one row and plot
isum = isum + 1;
adj(isum) = bin2dec(oport.adj');
data(isum) = bin2dec([oport.dvalid oport.odata]);

if isum == 17
.
.
.

5
iport.isum = dec2bin(isum,5);
iport.qsum = dec2bin(qsum,5);

else
iport.isum = dec2bin(isum,5);

end

1 Specify the MATLAB function name and required parameters.

The function definition on the first line represents the communication
channel between MATLAB and ModelSim. The function definition

• Names the function. This definition names the function
manchester_decoder, which differs from the entity name decoder.
Because the names differ, the function name must be specified explicitly
later when the entity is initialized for verification with the matlabtb or
matlabtbeval ModelSim command.

• Defines required input and output parameters. A MATLAB test bench
function must include two input parameters, iport and tnext, and
three output parameters, oport, tnow, and portinfo, and must appear
in the order shown.

iport Forces (by deposit) a value onto the signal connected to the
entity’s input ports, isum and qsum.

tnext Specifies a time value that indicates when ModelSim is to
call back the MATLAB function.

5–24



Coding a MATLAB Test Bench Function

oport Receives VHDL signal values from the entity’s output
ports, adj, dvalid, and odata.

tnow Receives the simulation time at which ModelSim calls the
MATLAB function.

portinfo For the first invocation of the function, receives an array of
information that describes the ports defined for the entity.

The following figure shows the relationship between the entity’s ports
and the MATLAB function’s iport and oport parameters.

decoder.vhd

Input Signals Output Signals

iport.isum (5)
iport.qsum (5)

oport.adj (2)
oport.dvalid(1)
oport.odata(1)

For more information on the required MATLAB function parameters, see
“Setting up Expected Parameters” on page 5–13.

2 Make note of the data types of ports defined for the entity under
simulation.

The Link for ModelSim interface converts VHDL data types to comparable
MATLAB data types and vice versa. As you develop your MATLAB
function, you must know the types of the data that it receives from
ModelSim and needs to return to ModelSim.

The entity defined for this example consists of the following ports:

5–25



5 Coding a Link for ModelSim MATLAB Application

Example Port Definitions

Port... Of
Direction...

And Type... Converts To/Needs
To Be Converted
To...

isum IN STD_LOGIC_VECTOR(4
DOWNTO 0)

A 5-bit column
or row vector of
characters where
each bit maps
to standard logic
character 0 or 1.

qsum IN STD_LOGIC_VECTOR(4
DOWNTO 0)

A 5-bit column
or row vector of
characters where
each bit maps
to standard logic
character 0 or 1.

adj OUT STD_LOGIC_VECTOR(1
DOWNTO 0)

A 2-element
column vector of
characters. Each
character matches
a corresponding
character literal
that represents
a logic state and
maps to a single
bit.

dvalid OUT STD_LOGIC A character that
matches the
character literal
representing the
logic state.

odata OUT STD_LOGIC A character that
matches the
character literal
representing the
logic state.

5–26



Coding a MATLAB Test Bench Function

For more information on interface data type conversions, see “Data Type
Conversions” on page 5–9.

3 Set up any required timing parameters.

The tnext assignment statement sets up timing parameter tnext such that
the simulator calls back the MATLAB function every nanosecond.

4 Convert oport data to appropriate MATLAB data types for
processing.

The two calls to bin2dec convert the binary data that the MATLAB
function receives from the entity’s output ports, adj, dvalid, and odata to
unsigned decimal values that MATLAB can compute. The function converts
the 2-bit transposed vector oport.adj to a decimal value in the range 0 to 4
and oport.dvalid and oport.odata to the decimal value 0 or 1.

“Converting Data for Manipulation” on page 5–17 provides a summary of
the types of data conversions to consider when coding simulation MATLAB
functions.

5 Convert data to be returned to ModelSim.

The three calls to dec2bin convert the decimal values computed by
MATLAB to binary data that the MATLAB function can deposit to the
entity’s input ports, isum and qsum. In each case, the function converts a
decimal value to 5-element bit vector with each bit representing a character
that maps to a character literal representing a logic state.

“Converting Data for Return to ModelSim” on page 5–18 provides a
summary of the types of data conversions to consider when returning data
to ModelSim.

5–27



5 Coding a Link for ModelSim MATLAB Application

Placing a MATLAB Test Bench Function on the MATLAB Search
Path

The MATLAB function associated with a VHDL entity must be on the
MATLAB search path or reside in the current working directory (see the
MATLAB cd function). To verify whether the function is accessible, use the
MATLAB which function. The following call to which checks whether the
function MyVhdlFunction is on the MATLAB search path:

which MyVhdlFunction
D:\work\modelsim\MySym\MyVhdlFunction.m

If the specified function is on the search path, which displays the complete
path to the function’s M-file. If the function is not on the search path, which
informs you that the file was not found:

which MyVhdlFunction
MyVhdlFunction not found

To add a MATLAB function to the MATLAB search path, open the Set
MATLAB Path window by clicking File–>Set Path. Alternatively, for
temporary access, you can change the MATLAB working directory to a desired
location with the cd command.

5–28



6

Starting and Controlling
MATLAB Test Bench
Sessions

The Link for ModelSim offers flexibility in how you start and control a VHDL
model test bench session with MATLAB. A session can consist of a single
function invocation, a series of timed invocations, or invocations based on
timing data returned by a MATLAB function to ModelSim. This chapter helps
you determine what your application’s scheduling requirements might be,
explains how to start the most basic simulation, and explains how to apply
available scheduling mechanisms for finer levels of test bench control:

“Overview” (p. 6–3) Provides an overview of the steps for
starting and controlling a MATLAB
test bench session.

“Checking the MATLAB Server’s
Link Status” (p. 6–5)

Explains how to check the status of
the MATLAB server.

“Starting the MATLAB Server” (p.
6–7)

Explains how to start the MATLAB
server.

“Starting ModelSim for Use with
MATLAB” (p. 6–10)

Explains how to start ModelSim for
use with MATLAB.

“Loading a VHDL Entity for
Verification” (p. 6–12)

Explains how to load a VHDL entity
in ModelSim for simulation and
verification with MATLAB.



6 Starting and Controlling MATLAB Test Bench Sessions

“Deciding on Test Bench Scheduling
Options” (p. 6–13)

Describes different ways of
scheduling the invocations of a
MATLAB test bench function.

“Controlling Callback Timing from a
MATLAB Test Bench Function” (p.
6–14)

Explains how to control callback
timing from a MATLAB test bench
function.

“Initializing the Simulator for a
MATLAB Test Bench Session” (p.
6–16)

Explains how to initialize the
ModelSim simulator for use with
MATLAB as a test bench tool.

“Applying Stimuli with the
ModelSim force Command” (p. 6–21)

Explains how to apply test bench
stimuli with ModelSim force
commands.

“Running and Monitoring a Test
Bench Session” (p. 6–22)

Explains how to run and monitor
test bench session.

“Restarting a Test Bench Session”
(p. 6–25)

Explains how to restart ModelSim
during a test bench session.

“Stopping a Test Bench Session ” (p.
6–26)

Explains how to stop a test bench
session.

6–2



Overview

Overview

To start and control the execution of a simulation in the MATLAB
environment,

1 Check the MATLAB server’s link status.

2 Start the MATLAB server.

3 Launch ModelSim for use with MATLAB.

4 Load a VHDL entity in ModelSim for simulation and verification with
MATLAB.

5 Decide on how you want to schedule invocations of the MATLAB test
bench function.

6 Initialize the ModelSim simulator for use with MATLAB as a test bench
tool.

7 Apply test bench stimuli.

8 Run and monitor the test bench session.

9 Restart simulator during a test bench session.

10 Stop a test bench session.

The following figure shows the steps in a flow diagram.

6–3



6 Starting and Controlling MATLAB Test Bench Sessions

Done

Yes

NoMATLAB
Server Running

?
Start the MATLAB Server

Start ModelSim for Use with MATLAB

Load VHDL Entity for Test Benching

Decide on Scheduling Options

Initialize Simulator for MATLAB Test Benching Session

Applying
Stimuli with ModelSim

force Commands
?

Enter force CommandsYes

Restart
Simulator

?

Test
Another Entity

?

Run and Monitor Test Benching Session

No

Yes

Yes

No

MATLAB Environment
ModelSim Environment
Both Environments

No

6–4



Checking the MATLAB Server’s Link Status

Checking the MATLAB Server’s Link Status

The first step to starting a ModelSim and MATLAB test bench session is to
check the MATLAB server’s link status. Is the server running? If the server is
running, what mode of communication and, if applicable, what TCP/IP socket
port is the server using for its links? You can retrieve this information by
using the MATLAB function hdldaemon with the 'status' option. For example:

hdldaemon('status')

The function displays a message that indicates whether the server is running
and, if it is running, the number of connections it is handling. For example:

HDLDaemon socket server is running on port 4449 with 0 connections

If the server is not running, the message reads

HDLDaemon is NOT running

To determine the mode of communication and TCP/IP socket port in use,
assign the return value of the function call to a variable. For example:

x=hdldaemon('status')
HDLDaemon socket server is running on port 4449 with 0 connections
x =

comm: 'sockets'
connections: 0

ipc_id: '4449'

This function call indicates that the server is using TCP/IP socket
communication with socket port 4449 and is running with no connections. If a
shared memory link is in use, the value of comm is 'shared memory' and the
value of ipc_id is a file system name for the shared memory communication
channel. For example:

x=hdldaemon('status')
HDLDaemon shared memory server is running with 0 connections
x =

comm: 'shared memory'

6–5



6 Starting and Controlling MATLAB Test Bench Sessions

connections: 0
ipc_id: [1x45 char]

6–6



Starting the MATLAB Server

Starting the MATLAB Server

If the MATLAB server is not running, start it:

1 Start MATLAB.

2 In the MATLAB Command Window, call the hdldaemon function with
property name/property value pairs that specify whether the Link for
ModelSim interface is to

• Use shared memory or TCP/IP socket communication

• Return time values in seconds or as 64–bit integers

Use the following syntax:

hdldaemon('PropertyName', PropertyValue...)

The following table explains when and how to specify property
name/property value pairs.

Note The communication mode that you specify (shared memory or
TCP/IP sockets) must match what you specify for the communication mode
when you initialize the ModelSim simulator for use with a MATLAB with
the matlabtb or matlabtbeval ModelSim command. In addition, if you
specify TCP/IP socket mode, the socket port that you specify with this
function and the ModelSim command must match. For more information
on modes of communication, see “Choosing TCP/IP Socket Ports” on page
1–17. For more information on establishing the ModelSim end of the
communication link, see “Initializing the Simulator for a MATLAB Test
Bench Session” on page 6–16.

6–7



6 Starting and Controlling MATLAB Test Bench Sessions

If Your Application Is To... Do the Following...

Operate in shared
memory mode

Omit the 'socket', tcp_spec property
name/property value pair. The interface
operates in shared memory mode by default.
You should use shared memory mode if your
application configuration consists of a single
system and uses a single communication
channel.

Operate in TCP/IP socket
mode, using a specific
TCP/IP socket port

Specify the 'socket', tcp_spec property
name and value pair. The tcp_spec can
be a socket port number or service name.
Examples of valid port specifications include
'4449', 4449, and MATLAB Service. For
information on choosing a TCP/IP socket
port, see “Choosing TCP/IP Socket Ports” on
page 1–17.

Operate in TCP/IP socket
mode, using a TCP/IP
socket that the operating
system identifies as
available

Specify 'socket', 0 or 'socket', '0'.

Return time values in
seconds (type double)

Specify 'time', 'sec' or omit the parameter.
This is the default time value resolution.

Return 64-bit time values
(type int64)

Specify 'time', 'int64' .

The following function call starts the server in TCP/IP socket mode, using
port number 4449, with a time resolution of seconds (the default).

hdldaemon('socket', 4449)

You also can start the server from a script. Consider the following function
call sequence:

dstat = hdldaemon('socket', 0)
portnum = dstat.ipc_id

6–8



Starting the MATLAB Server

The first call to hdldaemon specifies that the server use TCP/IP communication
with a port number that the operating system identifies and returns
connection status information, including the assigned port number, to dstat.
The statement on the second line assigns the socket port number to portnum
for future reference.

6–9



6 Starting and Controlling MATLAB Test Bench Sessions

Starting ModelSim for Use with MATLAB

Start ModelSim directly from MATLAB by calling the MATLAB function
vsim. This function starts and configures the ModelSim simulator (vsim) for
use with the MATLAB feature of the Link for ModelSim. By default, the
function starts the first version of the simulator executable (vsim.exe) that it
finds on the system path (defined by the path variable), using a temporary
DO file that is overwritten each time ModelSim starts.

You can customize the DO file that starts ModelSim by specifying the call to
vsim with the following property name\property value pairs:

Notes

• The vsim function overrides any options previously defined by the
setupmodelsim function.

• To start ModelSim from MATLAB with a default configuration previously
defined by setupmodelsim, issue the command !vsim at the MATLAB
command prompt.

To... Specify...

Include one or more Tcl
commands in the DO file that
are to execute after ModelSim
launches

'tclstart', 'tcl_commands', where
tcl_commands is a command string
or cell array of command strings,
which can include the matlabtb and
matlabtbevalModelSim commands that
initialize the simulator for a test bench
session (see “Initializing the Simulator
for a MATLAB Test Bench Session” on
page 6–16)

6–10



Starting ModelSim for Use with MATLAB

To... Specify...

Start a specific version of the
simulator or a version of the
simulator that is not on the
system path

'vsimdir', 'pathname', where pathname
identifies the path and file name for the
version of the simulator executable you
want to launch

Create a DO file for future
reference or use

'startupfile', 'pathname', where
pathname specifies a path and file name
for the generated DO file

The following example changes the directory location to VHDLproj and then
calls the function vsim. Because the command line omits the 'vsimdir' and
'startupfile' properties, vsim creates a temporary DO file. The 'tclstart'
property specifies Tcl commands that load and initialize the ModelSim
simulator for test bench instance modsimrand.

cd VHDLproj
vsim('tclstart',...

'vsimmatlab modsimrand; matlabtb modsimrand 10 ns -socket 4449')

6–11



6 Starting and Controlling MATLAB Test Bench Sessions

Loading a VHDL Entity for Verification

After you start ModelSim from MATLAB with a call to vsim, load an instance
of a VHDL entity for verification with the ModelSim command vsimmatlab.
At this point, it is assumed that you have coded and compiled your VHDL
model as explained in Chapter 5, “Coding a Link for ModelSim MATLAB
Application”. Issue the ModelSim command vsimmatlab for each instance of
an entity in your model that you want to cosimulate. For example:

vsimmatlab work.modsimrand

This command opens a simulation workspace for modsimrand and displays a
series of messages in the ModelSim command window as the simulator loads
the entity’s packages and architectures.

6–12



Deciding on Test Bench Scheduling Options

Deciding on Test Bench Scheduling Options

By default, the Link for ModelSim interface invokes a MATLAB test bench
function once (when time equals 0). If you want to apply more control and
execute the MATLAB function more than once, decide on scheduling options
that specify when and how often the Link for ModelSim interface is to invoke
the relevant MATLAB function. Depending on your choices, you may need
to modify the function or specify specific arguments when you initiate a
MATLAB test bench session with the matlabtb or matlabtbeval command.

You can schedule a MATLAB simulation function to execute

• At a time that the MATLAB function passes to ModelSim with the tnext
input parameter

• Based on a time specification that can include discrete time values, repeat
intervals, and a stop time

• When a specified signal experiences a rising edge — changes from '0' to '1'

• When a specified signal experiences a falling edge — changes from '1' to '0'

• Based on a sensitivity list — when a specified signal changes state

Decide on a combination of options that best meet your test bench application
requirements. For details on using the tnext parameter, see “Controlling
Callback Timing from a MATLAB Test Bench Function” on page 6–14. For
information on setting other scheduling parameters, see “Initializing the
Simulator for a MATLAB Test Bench Session” on page 6–16.

6–13



6 Starting and Controlling MATLAB Test Bench Sessions

Controlling Callback Timing from a MATLAB Test Bench
Function

You can control the callback timing of a MATLAB test bench function by
using that function’s tnext input parameter. This parameter passes a time
value to ModelSim, which gets added to the MATLAB function’s simulation
schedule. If the function returns a null value ([]) , no new entries are added
to the schedule.

You can set the value of tnext to a string or value of type double or int64.
The following table explains how the interface converts each type of data for
use in the ModelSim environment.

Time Representations for tnext Parameter

If You Specify a... The Interface...

String that includes a unit
specification

Parses the string as a scaled time
value with units of fs (femtoseconds),
ps (picoseconds), ns (nanoseconds), us
(microseconds), ms (milliseconds), or sec
(seconds). The value is scaled to the
nearest multiple of the current time value
resolution. For example, the following
string scales to the simulation time nearest
to 12.2 nanoseconds as a multiple of the
current ModelSim time resolution.

tnext = '12.2 nsec'

String that does not specify
units

Parses the string as the number of ticks
based on the ModelSim time resolution
limit. For example, the following string
parses to 100 ticks of the current time
resolution.

tnext = 'le2'

6–14



Controlling Callback Timing from a MATLAB Test Bench Function

If You Specify a... The Interface...

double value Converts the value to seconds. For
example, the following value converts
to the simulation time nearest to 1
nanosecond as a multiple of the current
ModelSim time resolution.

tnext = 1e-9

int64 value Converts to an integer multiple of the
current ModelSim time resolution limit.
For example, the following value converts
to 100 ticks of the current time resolution.

tnext=int64(100)

Note The tnext parameter represents time from the start of the
simulation. Therefore, tnext should always be greater than tnow.

6–15



6 Starting and Controlling MATLAB Test Bench Sessions

Initializing the Simulator for a MATLAB Test Bench Session

Once you decide on the controls you need to apply for a test bench, you are
ready to initialize the ModelSim simulator for a specific MATLAB test bench
session. You initialize ModelSim for a cosimulation session with the matlabtb
or matlabtbeval command. These commands

• Identify the instance of an entity in the VHDL model being simulated
and test benched

• Define the communication link between ModelSim and MATLAB

• Specify a callback to a MATLAB function that executes in the context of
MATLAB on behalf of the instance under simulation in ModelSim

In addition, matlabtb commands can include parameters that control when
the MATLAB function executes.

You must specify at least one instance of an entity in your VHDL model.
By default, the command applies a shared memory communication link
and attaches the specified instance to a MATLAB function that has the
same name as the instance. For example, if the instance is modsimrand, the
command links the instance with the MATLAB function modsimrand in file
modsimrand.m. Alternatively, you can specify a different function name with
the option -mfunc.

To apply TCP/IP socket communication, specify the command with the
-socket option and a TCP/IP specification. If ModelSim and MATLAB are
running on the same system, the TCP/IP specification identifies a unique
TCP/IP socket port to be used for the link. If the two applications are running
on different systems, you must specify a remote host name or Internet
address in addition to the socket port. The following table lists different ways
of specifying a TCP/IP specification.

Format Example

Port number 4449 on this computer

Port alias matlabservice on this computer

Port number and remote host name 4449@compa

6–16



Initializing the Simulator for a MATLAB Test Bench Session

Format Example

Remote host name and port number compa:4449

Port alias and remote host Internet
address

matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see “Choosing TCP/IP
Socket Ports” on page 1–17.

Note The communication mode and, if appropriate, the TCP/IP
specification that you specify with the matlabtb or matlabtbevalcommand
must match what you specify for the communication mode when you call
the hdldaemon function in MATLAB. For more information on modes of
communication, see “Modes of Communication” on page 1–8. For information
on choosing socket ports, see “Choosing TCP/IP Socket Ports” on page 1–17.
For more information on starting the MATLAB end of the communication
link, see “Starting the MATLAB Server” on page 6–7.

The matlabtbeval command executes the MATLAB function once at the start
of the simulation, while matlabtb provides several options for scheduling
MATLAB function execution. The following table lists the various scheduling
options.

Note For time-based parameters, you can specify any standard time units
(ns, sec, and so on). If you do not specify units, the command treats the time
value as an integer value of simulation intervals.

6–17



6 Starting and Controlling MATLAB Test Bench Sessions

Simulation Scheduling Options

To Specify that
the MATLAB
function
Execute...

Include... Where...

At explicit times time[, ...] time represents one of n time
values, past time 0, at which the
MATLAB function is to execute.

For example:

10 ns, 10 ms, 10 sec

The MATLAB function executes
when time equals 0 and then 10
nanoseconds, 10 milliseconds,
and 10 seconds from time zero.

A combination of
explicit times and
repeatedly at an
interval

time[, ...] -repeat n time represents one of n time
values at which the MATLAB
function is to execute and
the n specified with -repeat
represents an interval between
MATLAB function executions.
The interface applies the union
of the two options.

For example:

5 ns -repeat 10 ns

The MATLAB function executes
at time equals 0 ns, 5 ns, 15 ns,
25 ns, and so on.

6–18



Initializing the Simulator for a MATLAB Test Bench Session

To Specify that
the MATLAB
function
Execute...

Include... Where...

When a
specific signal
experiences a
rising or falling
edge

-rising signal[, ...]

-falling signal[, ...]

signal represents a pathname
of a signal defined as a logic
type — STD_LOGIC, BIT, X01,
and so on.

A sensitivity list -sensitivity
signal[, ...]

signal represents a pathname
of a signal defined as any type.
If the value of one or more
signals in the specified list
changes, the interface invokes
the MATLAB function.

Note Use of this option for
INOUT ports can result in double
calls.

If you specify the option with
no signals, the interface is
sensitive to value changes for
all signals.

For example:

-sensitivity /randnumgen/dout

The MATLAB function executes
if the value of dout changes.

6–19



6 Starting and Controlling MATLAB Test Bench Sessions

Note When specifying signals with the -rising, -falling, and
-sensitivity options, specify them in full pathname format. If you do not
specify a full pathname, the command applies ModelSim rules to resolve
signal specifications.

Consider the following matlabtb command:

VSIM n> matlabtb modsimrand -rising /modsimrand/clk,
-socket 4449

This command links an instance of the entity modsimrand to function
modsimrand.m, which executes within the context of MATLAB based on
specified timing parameters. In this case, the MATLAB function is called
when the signal /modsimrand/clk experiences a rising edge.

Arguments in the command line specify the following:

modsimrand That an instance of the VHDL entity
modsimrand be linked with the MATLAB
function modsimrand.

-rising /modsimrand/clk That the MATLAB function modsimrand be
called when the signal /modsimrand/clk
changes from '0' to '1'.

-socket 4449 That TCP/IP socket port 4449 be used
to establish a communication link with
MATLAB.

To verify that the matlabtb or matlabtbeval command established a
connection, change your input focus to MATLAB and call the function
hdldaemon with the 'status' option as follows:

hdldaemon('status')

If a connection exists, the function returns the message

HDLDaemon socket server is running on port 4449 with 1 connection

6–20



Applying Stimuli with the ModelSim force Command

Applying Stimuli with the ModelSim force Command

Once you establish a link between ModelSim and MATLAB, you are ready
to apply stimuli to the test bench environment. One way of applying stimuli
is through the iport parameter of the linked MATLAB function. This
parameter forces signal values by deposit. Other ways include issuing force
commands in the ModelSim Main window or using the Edit>Clock option
in the ModelSim Signals window.

For example, consider the following sequence of force commands:

VSIM n> force clk 0 0 ns, 1 5 ns -repeat 10 ns
VSIM n> force clk_en 1 0
VSIM n> force reset 0 0

These commands

• Force the clk signal to 0 at 0 nanoseconds after the current simulation time
and to 1 at 5 nanoseconds after the current ModelSim simulation time.
This cycle repeats starting at 10 nanoseconds after the current simulation
time, causing transitions from 1 to 0 and 0 to 1 every 5 nanoseconds, as the
following diagram shows.

t 0
0

1

5 10 20 30

...

• Force the clk_en signal to 1 at 0 nanoseconds after the current simulation
time.

• Forces the reset signal to 0 at 0 nanoseconds after the current simulation
time.

6–21



6 Starting and Controlling MATLAB Test Bench Sessions

Running and Monitoring a Test Bench Session

Start a test bench session from ModelSim. ModelSim offers a number of
options for running a simulation to debug, analyze, or verify a VHDL model.
A typical sequence for running a simulation interactively from the main
ModelSim window is shown below:

1 Start the simulation by entering the ModelSim run command or the
Simulate>Run option in the Main window.

The run command offers a variety of options for applying control over how a
simulation runs. For example, you can specify that a simulation run for a
number of time steps. Alternatively, you can specify the -all option, which
causes the simulation to run forever, until the simulation hits a breakpoint,
or a breakpoint event occurs.

The following command instructs ModelSim to run the loaded simulation
for 50000 time steps:

run 50000

2 Set breakpoints in the VHDL and MATLAB code to verify and analyze
simulation progress and correctness. The following table lists ways you can
set breakpoints in each application environment.

ModelSim Environment MATLAB Environment

Enter the bp command Click next to an executable statement
in the breakpoint alley of the
Editor/Debugger

Click Simulate>Break in the
Main window

Click the set/clear breakpoint
button on the toolbar

Click the Break button on the
Main or Wave window toolbar

Click Set/Clear Breakpoint on the
Breakpoints menu

Click Set/Clear Breakpoint on the
context menu

Call the dbstop function

The following ModelSim command sets a breakpoint at line 50 in the
VHDL file modsimrand.vhd:

6–22



Running and Monitoring a Test Bench Session

bp modsimrand.vhd 50

3 Step through the simulation and examine values. The following table lists
ways you can step through code in each application environment.

ModelSim Environment MATLAB Environment

Click the Step or Step Over
button on the Main or Wave
window toolbar

Click the Step, Step-In, or
Step-Out toolbar button

Click the Step or Step-Over
options on the Simulate>Run
menu

Click the Step, Step-In, or
Step-Out option on the Debug
menu

Enter the step command Click the Go Until Cursor menu
option

Call the dbstep function

4 When you block execution of the MATLAB function, ModelSim also blocks
and remains blocked until you clear all breakpoints in the function’s
M-code.

5 Resume the simulation, as needed. The following table lists ways you can
resume a simulation in each application environment.

ModelSim Environment MATLAB Environment

Click the Run Continue button
on the Main or Wave window
toolbar

Click the Continue toolbar button

Click the Continue option on the
Simulate>Run menu

Click the Continue, Run, or Save
and Run option on the Debug
menu

Enter the run command with the
-continue option

Call the dbcont function

The following ModelSim command instructs vsim to resume a simulation:

run -continue

6–23



6 Starting and Controlling MATLAB Test Bench Sessions

For more information on ModelSim and MATLAB debugging features, see the
appropriate ModelSim and MATLAB online help or documentation.

6–24



Restarting a Test Bench Session

Restarting a Test Bench Session

Because ModelSim issues the service requests during a MATLAB test bench,
you must restart a test bench session from ModelSim. To restart a session,

1 Make ModelSim your active window, if your input focus was not already set
to that application.

2 Reload VHDL design elements and reset the simulation time to zero by
doing one of the following:

• Click the Restart button on the Source Window toolbar

• Click the Restart option on the Simulate–>Run menu

• Enter the restart command in the main window

3 Reissue the matlabtb command.

Note To restart a simulation that is in progress, issue a break command
and end the current simulation session before restarting a new session.

6–25



6 Starting and Controlling MATLAB Test Bench Sessions

Stopping a Test Bench Session

When you are ready to stop a test bench session, it is best to do so in an orderly
way to avoid possible corruption of files and to ensure that all application
tasks shut down appropriately. You should stop a session as follows:

1 Make ModelSim your active window, if your input focus was not already set
to that application.

2 Halt the simulation by clicking the Simulate>End Simulation option
on the main window.

3 Close your project by clicking the File>Close>Project option on the main
window.

4 Exit ModelSim, if you are finished with the application.

5 Quit MATLAB, if you are finished with the application. If you want to
shut down the server manually, stop the server by calling hdldaemon with
the 'kill' option:

hdldaemon('kill')

For more information on closing ModelSim sessions, see the ModelSim online
help or documentation.

6–26



7

Modeling and Verifying
a VHDL Design with
Simulink

Simulink is a software package used widely in academia and industry to
model and simulate dynamic systems. Together, ModelSim, Simulink,
and Simulink blocksets provide a powerful modeling and cosimulation
environment for Electronic Design Automation (EDA). This chapter explains
how to set up a cosimulation environment in Simulink that includes VHDL
models designed and simulated with ModelSim.

“Overview” (p. 7–3) Provides an overview of the process
for integrating Link for ModelSim
blocks into a Simulink design.

“Creating a Hardware Model Design
in Simulink” (p. 7–5)

Lists questions to think about as
you decide to include Simulink in an
EDA solution.

“Handling of Signal Values Across
Simulation Domains” (p. 7–8)

Explains how the Link for ModelSim
addresses the differences in
treatment of simulation time in
ModelSim and Simulink.

“Configuring Simulink for VHDL
Models” (p. 7–17)

Gives suggestions for configuring
Simulink more optimally for use
with Link for ModelSim blocks.

“Running and Testing a Hardware
Model in Simulink” (p. 7–19)

Suggests fully testing a Simulink
model into which you plan to later
integrate Link for ModelSim blocks.



7 Modeling and Verifying a VHDL Design with Simulink

“Starting ModelSim for Use with
Simulink ” (p. 7–20)

Introduces the tools for coding the
VHDL components of a cosimulation
model and explains how to establish
the communication link between
Simulink and ModelSim.

“Loading a VHDL Entity for
Cosimulation” (p. 7–23)

Explains how to load an instance of
a VHDL entity for cosimulation in
ModelSim.

“Adding the VHDL Representation of
a Model Component into a Simulink
Model” (p. 7–24)

Explains how to integrate the VHDL
representation of a model component
into a Simulink model with Link for
ModelSim blocks.

“Configuring a VHDL Cosimulation
Block” (p. 7–26)

Explains how to use a Simulink
block parameters dialog to configure
Link for ModelSim blocks.

“Running and Testing a
Cosimulation Model in Simulink” (p.
7–42)

Explains how to use the To VCD File
block to generate VCDs.

“Using a Value Change Dump File
for Design Verification” (p. 7–43)

Explains how to start a cosimulation
model in Simulink. This section also
explains how to reset clocks and
restart ModelSim during testing.

7–2



Overview

Overview

Link for ModelSim blocks link hardware components that are concurrently
simulating in ModelSim to the rest of a Simulink model.

Two potential use scenarios follow:

• A single VHDL Cosimulation block fits into the framework of a larger
system-oriented Simulink model.

• The Simulink model is a collection of VHDL Cosimulation blocks, each
representing a specific hardware component.

The following process shows the typical workflow for integrating VHDL
Cosimulation blocks into a Simulink design that includes one or hardware
components:

1 Design your application model in Simulink. One or more components of the
model can represent hardware that you intend to describe with VHDL.

2 Run and test the model design in Simulink.

3 Verify that the model runs as expected. If it does not, repeat steps 1 and 2
to rework and fine tune the design.

4 Use ModelSim to simulate a discrete model component of the design coded
in VHDL.

5 Integrate the VHDL representation of the model component into the
Simulink model as a VHDL Cosimulation block.

6 Configure the VHDL Cosimulation block. The block parameters dialog
includes tabs for configuring port, communication, clock, and tool command
language (Tcl) parameters.

7 Run and test the revised model design in Simulink.

8 Verify that the revised model runs as expected. If it does not,

a Modify the VHDL code and simulate it in ModelSim.

b Determine whether you need to reconfigure the VHDL Cosimulation
block. If you do, repeat steps 6 to 8. If you do not, repeat steps 7 and 8.

7–3



7 Modeling and Verifying a VHDL Design with Simulink

9 Determine whether you need to replace another component of the Simulink
model with a VHDL Cosimulation block. If you do, go to step 4.

10 Consider using a To VCD File block to verify cosimulation results.

The following figure shows the steps in a flow diagram.

Use MATLAB and Simulink
to design model

Run and test model

Use ModelSim to simulate a discrete
model component coded in VHDL

Add VHDL representation of model
component into the Simulink model

Configure cosimulation block

Run and test model

Expected
results?

Replace
another

component?

Done

Yes

No

In ModelSim, modify and
simulate VHDL code

No

Yes

Reconfigure
cosimulation

block?

No

Yes

Start ModelSim for use with Simulink

Generate
VCD?

Yes

Configure To VCD
File block

No

Load VHDL entity for cosimulation

Model
ok?

Yes

No

7–4



Creating a Hardware Model Design in Simulink

Creating a Hardware Model Design in Simulink

Once you decide to include Simulink as part of your EDA flow, think about
its role:

• Will you start by developing a VHDL application, using ModelSim, and
possibly MATLAB, and then test the results at a system level in Simulink?

• Will you start with a system-level model in Simulink with “black box
hardware components” and, once the model runs as expected, replace the
black boxes with VHDL Cosimulation blocks?

• What other Simulink blocksets might apply to your application? Blocksets
of particular interest for EDA applications include the Communications,
DSP, and Fixed-Point Blocksets.

• Will you set up VHDL Cosimulation blocks as a subsystem in your model?

• What sample times will be used in the model? Will any sample times need
to be scaled?

• Will you generate a VCD?

After you answer these questions, use Simulink to build your simulation
environment.

The following window display shows a sample Simulink model that includes
a Link for ModelSim block.

7–5



7 Modeling and Verifying a VHDL Design with Simulink

The VHDL Cosimulation block models a Manchester receiver that is coded in
VHDL. Other blocks and subsystems in the model include the following:

• Frequency Error Range block, Frequency Error Slider block, and Phase
Event block

• Manchester encoder subsystem

• Data alignment subsystem

• Inphase/Quadrature (I/Q) capture subsystem

• Error Rate Calculation block from the Communications Blockset

• Bit Errors block

7–6



Creating a Hardware Model Design in Simulink

• Data Scope block

• Discrete-Time Scatter Plot Scope block from the Communications Blockset

For information on getting started with Simulink, see the Simulink online
help or documentation.

7–7



7 Modeling and Verifying a VHDL Design with Simulink

Handling of Signal Values Across Simulation Domains

The Link for ModelSim VHDL Cosimulation block serves as a bridge between
the Simulink and ModelSim simulation domains. The block represents a
VHDL component model within Simulink. Using the block, Simulink writes
(drives) signals to and reads signals from the VHDL model under simulation
in ModelSim. Signal exchange between the two domains occurs at regularly
scheduled time steps defined by the Simulink sample time.

As you develop a Link for ModelSim cosimulation application, you should be
familiar with how signal values are handled across the simulation domains
with respect to

• “How Simulink Drives Cosimulation Signals” on page 7–8

• “Representation of Simulation Time” on page 7–9

• “Handling of Multirate Signals” on page 7–10

• “Block Simulation Latency” on page 7–11

How Simulink Drives Cosimulation Signals
Although you can connect the output ports of a Link for ModelSim
cosimulation block to any signal in a VHDL entity’s hierarchy, you must use
some caution when connecting signals to input ports. Simulink uses the
deposit method of changing signal values to drive input to a cosimulation
block. The deposit method is the weakest method of forcing a VHDL signal
and can produce unexpected or undesired results when a signal is driven
by multiple sources. To avoid such conditions, you should attach the input
ports to signals that are not driven, such as the input ports of a top-level
VHDL entity.

If you need to use a signal that has multiple drivers and it is resolved (for
example, it is of type STD_LOGIC), Simulink applies the resolution function
at each time step defined by the signal’s Simulink sample rate. Depending
on the other drivers, the Simulink value may or may not get applied.
Furthermore, Simulink has no control over signal changes that occur between
its sample times.

7–8



Handling of Signal Values Across Simulation Domains

Representation of Simulation Time
A significant difference to note between the ModelSim and Simulink
applications is the representation of simulation time. ModelSim simulation
occurs at multiples of a resolution limit that is user defined in increments
of 10 (for example, 1 ns, 10 ns, 100 ns, and so on). By default, events in a
ModelSim simulation occur at increments of 1 nanosecond.

Simulink maintains simulation time as a double-precision value scaled to
seconds. This more complex representation accommodates continuous models
and discrete controllers. The differences in representation may cause timing
errors between ModelSim and Simulink simulation times.

To address this, Link for ModelSim blocks interpret Simulink sample time as
integer multiples of the ModelSim resolution limit and not as seconds. All
sample times in a Simulink model that includes Link for ModelSim blocks
are scaled as follows:

actual sample time = 
specified Simulink sample time

ModelSimm resolution limit

In addition, the Link for ModelSim interface limits the cosimulation blocks to
operate as fixed-rate devices. Signals driven and read by the blocks have a
defined, fixed sample time.

When you configure output ports for cosimulation blocks, you have the option
of specifying a sample time for block output ports. The value you specify must
be an integer multiple of the resolution limit that is defined in ModelSim. For
example, if the resolution limit defined in ModelSim is 10 nanoseconds, you
can specify a sample time that is any multiple of 10; a value of 200 causes
Simulink to interact with ModelSim every 2 microseconds.

In general, Simulink handles the sample time for a cosimulation block’s
ports as follows:

• If an input port is connected to a signal that has an explicit sample time,
based on forward propagation, Simulink applies that rate to that input port.

• If an input port is connected to a signal that does not have an explicit sample
time, Simulink assigns a sample time that is equal to the least common
multiple (LCM) of all identified input port sample times for the model.

7–9



7 Modeling and Verifying a VHDL Design with Simulink

• After Simulink sets the input port sample times, it applies the
user-specified output sample time to all output ports. If you do not specify
an explicit output sample time, Simulink applies the fastest input sample
time to all output ports.

As you develop a Simulink model for use with ModelSim, consider the
following sample time guidelines:

• Specify the output sample time for a cosimulation block as an integer
multiple of the resolution limit defined in ModelSim. Use the ModelSim
command report simulator state to check the resolution limit of the
loaded model. If the ModelSim resolution limit is 10 nanoseconds and
you specify a block’s output sample time as 200, Simulink interacts with
ModelSim every 2 microseconds.

• Specify the Simulink model’s start and stop time values (see the Solver
tab of the model’s Simulation Parameters dialog) as integers. Link
for ModelSim calculates the actual simulation start and stop times by
multiplying the integer you specify by number of ticks of the ModelSim
resolution limit.

• Derive the sample times for discrete blocks that interact with a
cosimulation block from the cosimulation block’s sample time.

• Use the Simulink Zero-Order Hold block to apply a zero-order hold (ZOH)
on continuous signals that are driven into a cosimulation block.

• Scale the sample times of all continuous signals driven or read by
continuous blocks in the model, using the equation shown above.

Handling of Multirate Signals
Link for ModelSim supports the use of multirate signals, signals that are
sampled or updated at different rates, in a single VHDL Cosimulation block.
A cosimulation block exchanges data for each signal at the Simulink sample
rate for that signal. For input signals, a cosimulation block accepts and
honors all signal rates.

Although cosimulation blocks can support only one sample time for all output
signals, you can produce multirate results. First, determine by how much the
desired output rates differ. If the differences are small, for example, two to
eight times a common base rate, do the following:

7–10



Handling of Signal Values Across Simulation Domains

1 Identify the fastest rate.

2 Configure the cosimulation block to use the fastest output sample time
for all output signals.

3 Use a Simulink rate converter block to produce the required rate variations,
outside the scope of the cosimulation block.

This approach requires some additional communications overhead, but in
cases where the difference in rates is small, the overhead is small and may be
acceptable.

For all other cases, use separate cosimulation blocks, each specified with a
different output sample time.

Block Simulation Latency
Simulink and the Link for ModelSim cosimulation blocks supplement the
hardware simulator environment, rather than operate as part of it. During
cosimulation, Simulink does not participate in ModelSim delta-time iteration.
From the Simulink perspective, all signal drives (reads) occur during a single
delta-time cycle. For this reason, and due to fundamental differences between
ModelSim and Simulink with regard to use and treatment of simulation
time, some degree of latency is introduced when you use Link for ModelSim
cosimulation blocks. The latency is a time lag that occurs between when
Simulink initiates the deposit of a signal and when the effect of the deposit is
visible on cosimulation block output.

Consider the following figure:

7–11



7 Modeling and Verifying a VHDL Design with Simulink

As the figure shows, Simulink cosimulation block input affects signal values
just after the current ModelSim time step (t+ ) and block output reflects
signal values just before the current ModelSim step time (t- ).

Regardless of whether your VHDL code is specified with latency, the
cosimulation block has a minimum latency that is equivalent to the
cosimulation block’s output sample time. For large sample times, the delay
can appear to be quite long, but this is an artifact of the cosimulation block,
which exchanges data with the HDL simulator at the block’s output sample
time only. This may be reasonable for a cosimulation block that models a
device that operates on a clock edge only, such as a register-based device.
For cosimulation blocks that contain pure combinatorial paths, however, it
might be necessary to adjust the sample time frequency to achieve simulation
performance required for circuit analysis.

To visualize cosimulation block latency, consider the following VHDL code and
Simulink model. The VHDL code represents an XOR gate.

-- edgedet.vhd

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY edgedet IS
END edgedet;

ARCHITECTURE behavioral OF edgedet IS
SIGNAL a : std_logic;
SIGNAL b : std_logic;
SIGNAL y : std_logic;
BEGIN

y <= a XOR b;
END behavioral;

7–12



Handling of Signal Values Across Simulation Domains

In the Simulink model, the cosimulation block VHDL Edge Detector contains
an XOR circuit. The second cosimulation block, VHDL Fast Output, simply
reads the same XOR output. The first block is driven by a signal generated
by the Pulse Generator block. The Data Type Conversion block converts the
signal to a boolean value. The signal is then treated three different ways:

• A z-1 Unit Delay block applies a sample and hold to the signal and drives
block input port a. The delay is equal to one period of the signal’s Simulink
sample time. When the delay is applied to the XOR, the pulse equals the
period specified by the delay block after any edges.

• The signal without a delay drives block input port b.

• The third signal bypasses the cosimulation block and goes directly to the
Scope block for display.

The second cosimulation block, VHDL Fast Output, is a source block that reads
the output of the XOR circuit and passes it on to the Scope block for display.

Now, assume that ModelSim is set up with a resolution limit of 100 ns and
an iteration limit of 5000, and that the sample times for the blocks in the
Simulink model are as follows:

Block Sample Time Value

Pulse Generator Sample time 100

Data Type Conversion
block

Sample time Inherited from Pulse
Generator block

7–13



7 Modeling and Verifying a VHDL Design with Simulink

Block Sample Time Value

Unit Delay block Sample time Inherited from Data Type
Conversion block

VHDL Cosimulation
block — Edge Detector

Input sample time Inherited from Unit Delay
block

Output sample time 100

VHDL Cosimulation
block — Fast Output
(source)

Output sample time 100

After the simulation runs, the ModelSim wave window appears as follows.

Note the following:

• Signal a gets asserted high after a 100 ns delay. This is due to the unit
delay applied by the Simulink model.

• Signal b gets asserted high immediately.

• Signal y experiences a falling edge as a result of the XOR computation.

7–14



Handling of Signal Values Across Simulation Domains

The following figure highlights the individual signal paths that get appear in
the Simulink Scope window.

Signal that bypasses
cosimulation blocks

0

1

900 1000 1100 1200 1300 1400

Signal that passes
through cosimulation
blocks

Delay
y

Initialized

Time
step

XOR

0

1

The signal that bypasses the cosimulation blocks rises at t=1000. That
signal stays high for the duration of the sample period. However, the signals
that are read from output port y of the two cosimulation blocks, display in
the Scope window as follows:

• After a one time step delay, the signals rise in response to step generator.
The delay occurs because the values that the step generator deposit on the
cosimulation block’s signal paths do not propagate to the block’s output
until the next Simulink cycle.

• After the next time step, the signal value falls due to the VHDL XOR
operation.

For cosimulation blocks that model combinatorial circuits, such as the one
in the preceding example, you may want to experiment with a faster sample
frequency for output ports. For example, suppose you change the Output
sample time for the VHDL Fast Output cosimulation block from 100 to 20.
The following figure highlights the individual signal paths that appear in
the Scope window for this scenario.

7–15



7 Modeling and Verifying a VHDL Design with Simulink

Signal that bypasses
cosimulation blocks

0

1
Delay

y

Initialized

Time
step

XOR

0

1

900 1000 1100 1200 1300 1400

Signal that passes through
VHDL Fast Output block -
Output sample time = 20

Delay

y

Initialized

Time
step

XOR

Signal that passes through
VHDL Edge Detect block -
Output sample time = 100

0

1

In this case, the signal that bypasses the cosimulation blocks and the output
signal read from the VHDL Edge Detect block remain the same. However,
the delay for the signal read from the VHDL Fast Output block is 20 ticks
instead of 100. Although the size of the time step is still tied to the ModelSim
resolution limit, the delay that occurs before the VHDL code is processed
is significantly reduced and the time of execution more closely reflects
simulation time in ModelSim.

Note Although this type of parameter tuning can increase simulation
performance, it can make a model more difficult to debug. For example, it
might be necessary to adjust the output sample time for each cosimulation
block.

7–16



Configuring Simulink for VHDL Models

Configuring Simulink for VHDL Models

When you create a Simulink model that includes one or more Link for
ModelSim blocks, you might want to adjust certain Simulink parameter
settings to best meet the needs of VHDL modeling. For example, you might
want to adjust the value of the Stop time parameter in the Simulation
Parameters dialog box.

You can adjust the parameters individually or you can use the M-file
dspstartup, which lets you automate the configuration process so that every
new model that you create is preconfigured with the following relevant
parameter settings:

Parameter Default Setting

'SingleTaskRateTransMsg' 'error'

'Solver' 'fixedstepdiscrete'

'SolverMode' 'singletasking'

'StartTime' '0.0'

'StopTime' 'inf'

'FixedStep' 'auto'

'SaveTime' 'off'

'SaveOutput' 'off'

'AlgebraicLoopMsg' 'error'

'InvariantConstants' 'on'

The default settings for 'SaveTime', 'SaveOutput', and 'InvariantConstants'
improve simulation performance.

You can use dspstartup by entering it at the MATLAB command line or
by adding it to the Simulink startup.m file. You also have the option of
customizing dspstartup settings. For example, you might want to adjust the
'StopTime' to a value that is optimal for your simulations, or set 'SaveTime' to
'on' to record simulation sample times.

7–17



7 Modeling and Verifying a VHDL Design with Simulink

For more information on using and customizing dspstartup, see the DSP
Blockset documentation. For more information about automating tasks
at startup, see the description of the startup command in the MATLAB
documentation.

7–18



Running and Testing a Hardware Model in Simulink

Running and Testing a Hardware Model in Simulink

If you take the approach of designing a Simulink model first, run and
test your model thoroughly before replacing or adding hardware model
components as Link for ModelSim blocks. Gather and save test bench data
that you can use later for comparing the model with a version that includes
Link for ModelSim blocks.

7–19



7 Modeling and Verifying a VHDL Design with Simulink

Starting ModelSim for Use with Simulink

The options available for starting ModelSim for use with Simulink vary
depending on whether you run ModelSim and Simulink on the same computer
system.

If both tools are running on the same system, start ModelSim directly from
MATLAB by calling the MATLAB function vsim. This function starts and
configures the ModelSim simulator (vsim) for use with the Link for ModelSim.
By default, the function starts the first version of the simulator executable
(vsim.exe) that it finds on the system path (defined by the path variable),
using a temporary DO file that is overwritten for each ModelSim start.

You can customize the DO file and communication mode to be used between
Simulink and ModelSim by specifying the call to vsim with property
name/property value pairs.

Note The following options may have been set previously with a call to
setupmodelsim. To check on current settings, search for and browse through
the contents of the file \tcl\ModelSimTclFunctionsForMATLAB.tcl in your
ModelSim installation path. Any options that you explicitly specify with the
MATLA vsim function override these default settings.

To... Specify...

Include one or more Tcl
commands in the DO file
that are to execute during
ModelSim startup

'tclstart', 'tcl_commands', where
tcl_commands is a command string
or cell array of command strings,
which can include the matlabtb and
matlabtbevalModelSim commands that
initialize the simulator for a test bench
session (see “Initializing the Simulator
for a MATLAB Test Bench Session” on
page 6–16)

7–20



Starting ModelSim for Use with Simulink

To... Specify...

Start a specific version of the
simulator that is not on the
system path

'vsimdir', 'pathname', where pathname
identifies the path and file name for the
version of the simulator executable you
want to start

Create a ModelSim startup file
for future use (for example, test
scripts)

'startupfile', 'pathname', where
pathname specifies a path and filename
for the generated DO file

Specify default TCP/IP socket
communication for the link
between Simulink and ModelSim

'socketsimulink', 'tcp_spec', where
tcp_spec specifies a socket port a
TCP/IP socket port number or service
name. For more information on choosing
TCP/IP socket ports, see “Choosing
TCP/IP Socket Ports” on page 1–17.

Specify shared memory
communication for the link
between ModelSim and Simulink
on a single computer

No 'socketsimulink' property. Shared
memory is the default mode of
communication and takes effect if you
omit 'socketsimulink' from the function
call.

Notes

• The vsim function applies the specified communication mode to all
invocations of Simulink from ModelSim.

• The vsim function overrides any options previously defined by the
setupmodelsim function.

• To start ModelSim from MATLAB with a default configuration previously
defined by setupmodelsim, issue the command !vsim at the MATLAB
command prompt.

The following example changes the directory location to VHDLproj and then
calls the function vsim. Because the function call omits the 'vsimdir' and
'startupfile' properties, vsim creates a temporary DO file. The 'tclstart'

7–21



7 Modeling and Verifying a VHDL Design with Simulink

property specifies a Tcl command that loads the VHDL entity parse in library
work for cosimulation between vsim and Simulink. The 'socketsimulink'
property specifies TCP/IP socket communication on the same computer, using
socket port 4449.

cd VHDLproj
vsim('tclstart', 'vsimulink work.parse', 'socketsimulink', '4449')

If ModelSim is running on a remote computer system,

1 Identify a valid and available socket port on the system that is running
ModelSim.

2 Execute the MATLAB vsim function on the system running MATLAB and
Simulink. In the function call, specify

• 'tclstart' with a Tcl command string that includes a vsimulink
command that specifies the socket port identified in step 1.

• 'startupfile' with the name of the DO file that is to include the Tcl
startup commands.

• 'socketsimulink' with the socket port number or service name identified
in step 1.

For example:

vsim('tclstart', 'vsimulink work.parse', 'startupfile',
'simulinkstart.do', 'socketsimulink', '4449')

3 Copy the generated DO file to the system that is running ModelSim. For
example, based on the preceding vsim command, you would copy the file
simulinkstart.do.

4 From an operating system prompt, enter the generated DO file with the
vsim command and -do option. For example

vsim -do simulinkstart.do

7–22



Loading a VHDL Entity for Cosimulation

Loading a VHDL Entity for Cosimulation

After you start ModelSim from MATLAB with a call to vsim, load an instance
of a VHDL entity for cosimulation with the ModelSim command vsimulink.
Issue the command for each instance of an entity in your model that you
want to cosimulate. For example:

vsimulink work.manchester

This command opens a simulation workspace for manchester and displays a
series of messages in the ModelSim command window as the simulator loads
the entity’s packages and architectures.

7–23



7 Modeling and Verifying a VHDL Design with Simulink

Adding the VHDL Representation of a Model Component into
a Simulink Model

After you code one of your model’s components in VHDL and simulate it in
the ModelSim environment, integrate the VHDL representation into your
Simulink model as a VHDL Cosimulation block:

1 Open your Simulink model, if it is not already open.

2 Delete the model component that the VHDL Cosimulation block is to
replace.

3 In the Simulink Library Browser, click the Link for ModelSim library. The
browser displays three block icons.

VHDL
Cosimulation

Block that has at least one input
port and one output port.

VHDL Sink Block that has no output ports.
Inherits data types of input ports
from driving blocks. Typically, a
sink analyzes signals.

VHDL Source Block that has no input ports.
Typically, generates signals
that are imported into a model.
Specifies an output sample time
parameter.

7–24



Adding the VHDL Representation of a Model Component into a Simulink Model

Notes

• The VHDL Sink and VHDL Source icons in the Link for ModelSim block
library are provided for convenience only and map directly to the VHDL
Cosimulation block.

• The Link for ModelSim library also includes a To VCD File block. For
information on using this block, see “Using a Value Change Dump File
for Design Verification” on page 7–43.

4 Copy one of the three icons from the Library Browser to your model.
Simulink creates a link to the block at the point where you drop the block
icon. For modeling sink and source devices, alternatively you can use the
VHDL Cosimulation block directly, and configure the block appropriately
for that type of device.

5 Connect any VHDL block ports to appropriate blocks in your Simulink
model.

7–25



7 Modeling and Verifying a VHDL Design with Simulink

Configuring a VHDL Cosimulation Block

You configure a VHDL Cosimulation block by specifying values for parameters
in a block parameters dialog. The dialog consists of four tabbed panes that
specify the following:

• Ports — Block input and output ports that correspond to signals, including
internal signals, of your VHDL design, and an output sample time

• Comm — Type of communication and communication settings to be used
for exchanging data between simulators

• Clocks — Rising-edge and falling-edge clocks to apply to your model

• Tcl — Tcl commands that you want to run before and after a simulation

The following sections help you identify what you need to configure, how to
open the Block Parameter dialog, and how to configure each pane.

What Are Your VHDL Cosimulation Block Requirements?
Before you start to configure a VHDL Cosimulation block, review the following
checklist. The checklist will help you identify the parameters you need to set.
If your answer to a question is something other than “no,” go to the topic
listed in the second column of the table for information on how to adjust the
parameter setting to meet your block requirements.

VHDL Cosimulation Block Requirements Checklist

Requirement For More Information, See...

Ports

Does the VHDL model you are mapping to Simulink
receive signals on input ports? If so, what are the input
ports?

“Mapping VHDL Signals to Block
Ports” on page 7–29

Does the VHDL model you are mapping to Simulink
transmit signals to output ports? If so, what are the
output ports?

“Mapping VHDL Signals to Block
Ports” on page 7–29

7–26



Configuring a VHDL Cosimulation Block

Requirement For More Information, See...

If the block is modeling an input and output device,
do you want to specify an explicit output sample time
for output ports? By default, if you specify both input
and output ports, the block inherits the fastest sample
time from its driver.

“Mapping VHDL Signals to Block
Ports” on page 7–29

If the block is block is modeling a source device, do you
want to specify an output sample time other than two
clock ticks? If you do not specify an input port, the block
uses a default sample time of two clock ticks.

“Mapping VHDL Signals to Block
Ports” on page 7–29

Communication

Is it critical that communication performance be as
optimal as possible?

“Configuring the Communication
Link” on page 7–33

Are you running ModelSim and Simulink on the same
computer?

“Configuring the Communication
Link” on page 7–33

If ModelSim and Simulink are running on the
same computer, do you want to use shared memory
communication?

“Configuring the Communication
Link” on page 7–33

Do you want to choose a TCP/IP socket port? If so, what
port number or service will you use to establish a link?

“Configuring the Communication
Link” on page 7–33

If you are running ModelSim and Simulink different
computers, what is the host name of the computer
running ModelSim?

“Configuring the Communication
Link” on page 7–33

Clocks

Do you want to create a rising-edge clock to apply
stimuli to your cosimulation model?

“Creating Optional Clocks” on page
7–35

Do you want to create a falling-edge clock to apply
stimuli to your cosimulation model?

“Creating Optional Clocks” on page
7–35

Tcl

7–27



7 Modeling and Verifying a VHDL Design with Simulink

Requirement For More Information, See...

Are there any Tcl commands that you want ModelSim to
execute before running a simulation, but after loading
the project in ModelSim?

“Specifying Before and After
Simulation Tcl Commands” on page
7–37

Are there any Tcl commands that you want ModelSim
to execute after running a simulation?

“Specifying Before and After
Simulation Tcl Commands” on page
7–37

Opening the Block Parameters Dialog
To open a block parameters dialog, double-click the block icon. For example,
to open the block parameters dialog for the VHDL Cosimulation block,
double-click

Simulink displays the following Block Parameters: VHDL Cosimulation
dialog.

7–28



Configuring a VHDL Cosimulation Block

Mapping VHDL Signals to Block Ports
The first step to configuring your Link for ModelSim block is to map signals
and signal instances of your VHDL design to port definitions in your block. In
addition to identifying input and output ports, you can specify a sample time
for all output ports. VHDL Cosimulation block input ports inherit sample
times from source signals.

The signals that you map can be at any level of the VHDL design hierarchy.
To map the signals,

1 In ModelSim, determine the test signal pathnames for the VHDL signals
you plan to define in your block. The ModelSim signal pathname feature
allows you to visualize and specify the hierarchy of signals in a VHDL
design. One way of displaying the pathnames is to view the test signals
in the pathname pane of the wave window with the full pathname
option enabled. For example, the following display shows all signals are
subordinate to the top-level entity manchester.

7–29



7 Modeling and Verifying a VHDL Design with Simulink

2 In Simulink, open the block parameters dialog for your VHDL Cosimulation
block, if it is not already open.

3 Click the Ports tab of the Block Parameters dialog. Simulink displays
the dialog as shown below.

7–30



Configuring a VHDL Cosimulation Block

In this tab, you define the VHDL signals of your design that you want to
include in your Simulink block and set a sample time for output ports.
The parameters that you should specify on the Ports tab depend on the
type of device the block is modeling.

For... Specify...

An input and
output device

Block input ports, block output ports, and an output
sample time; a default sample time of -1 causes the
output ports to inherit the sample time of the signal
source

A sink device Block input ports

A source device Block output ports and an output sample time; a
default sample time of 2 causes the output ports to
apply a sample time of two ticks of the ModelSim
resolution limit

7–31



7 Modeling and Verifying a VHDL Design with Simulink

4 Enter test signal pathnames of interest in the Block input ports and
Block output ports text fields. Use the ModelSim pathname syntax and
enter one pathname per line. You can include the ModelSim simulator
prefix sim:, but it is not required.

The following dialog display shows port definitions for a VHDL
Cosimulation block. Note the signal pathnames match pathnames that
appear in the ModelSim wave window shown in step 1.

Note When you define an input port, make sure that only one source is
set up to force input to that port. For example, you should avoid defining an
input port that has multiple instances. If multiple sources drive a signal,
your Simulink model may produce unpredictable results.

5 If you are configuring a VHDL Cosimulation block to model an input
and output device and the output rate is different than the input rate,
specify a sample time for the output ports. If the output and input rates

7–32



Configuring a VHDL Cosimulation Block

are the same, apply the default of -1. When specifying an explicit output
rate, specify an integer. Simulink uses the value that you specify and
the current ModelSim resolution limit to calculate an actual simulation
sample time, which accounts for simulation timing differences between the
cosimulation applications. The equation that Simulink uses to derive the
actual sample time follows:

actual sample time = 
specified Simulink sample time

ModelSimm resolution limit

The default output sample time is different for each type of device the
block might be modeling.

For... The Default Is...

Input and output
device

–1, which indicates that the block is to inherit the
sample time of the input signal.

Source device Two ticks of the ModelSim resolution limit

For more information on sample times in the Link for ModelSim
environment, see “Representation of Simulation Time” on page 7–9.

6 Click Apply.

Configuring the Communication Link
Configure a block’s communication link with the Comm tab of the block
parameters dialog.

The following steps guide you through the communication configuration. The
figure that follows shows the steps in a flow diagram:

1 Determine whether Simulink and ModelSim are running on the same
computer. If they are, skip to step 4.

2 Clear the ModelSim running on this computer check box. This check
box is selected by default.

3 In the Host name text field, specify the host name of the computer that is
running your VHDL simulation in ModelSim. Skip to step 6.

7–33



7 Modeling and Verifying a VHDL Design with Simulink

4 Decide whether you are going to use shared memory or TCP/IP sockets
for the communication channel. For information on the different modes
of communication, see “Modes of Communication” on page 1–8. If you
choose TCP/IP sockets, skip to step 6.

5 Select the Shared memory check box and skip step 7.

6 In the Port number or service text field, specify a valid port number or
service for your computer system. For information on choosing TCP/IP
socket ports, see “Choosing TCP/IP Socket Ports” on page 1–17.

7 Click Apply.

The following dialog display shows communication definitions for a VHDL
Cosimulation block.

The preceding sample Comm tab display specifies that

• Simulink and ModelSim are running on the same computer.

7–34



Configuring a VHDL Cosimulation Block

• TCP/IP socket mode of communication is used.

• TCP/IP port 4449 is used for the TCP/IP connection.

Creating Optional Clocks
You can create rising-edge or falling-edge clocks that apply internal stimuli to
your cosimulation model. When you specify a clock in your block definition,
Simulink creates a rising-edge or falling-edge clock that drives the specified
VHDL signals by depositing them.

Simulink attempts to create a clock that has a 50% duty cycle and a
predefined phase that is inverted for the falling edge case. If necessary,
Simulink degrades the duty cycle to accommodate some Simulink sample
times, with a worst case duty cycle of 66% for a sample time of T=3.

The following figure shows a timing diagram that includes rising and falling
edge clocks with a Simulink sample time of T=10 and a ModelSim resolution
limit of 1 ns. The figure also shows that given those timing parameters,
the clock duty cycle is 50%.

1 ns

50% Duty Cycle

Rising Edge Clock

Simulink Sample Period, T=10

ModelSim Resolution Limit

1

t

1

Falling Edge Clock

To create clocks,

1 In ModelSim, determine the clock signal pathnames you plan to define
in your block. To do this, you can use the same method explained for
determining the signal pathnames for ports in step 1 of “Mapping VHDL
Signals to Block Ports” on page 7–29.

7–35



7 Modeling and Verifying a VHDL Design with Simulink

2 Click the Clocks tab of the Block Parameters dialog. Simulink displays
the dialog as shown below.

3 Enter clock signal pathnames of interest in the Rising-edge clocks and
Falling-edge clocks text fields. Use the ModelSim pathname syntax
and enter one pathname per line.

The following dialog display defines rising-edge clock clk for the VHDL
Cosimulation block.

7–36



Configuring a VHDL Cosimulation Block

4 Click Apply.

Specifying Before and After Simulation Tcl Commands
You have the option of specifying Tcl commands to execute before and after
ModelSim simulates the VHDL component of your Simulink model. Tcl is a
programmable scripting language supported by the ModelSim simulation
environment. Use of Tcl can range from something as simple as a one-line
echo command to confirm that a simulation is running or as complete as
a complex script that performs an extensive simulation initialization and
startup sequence. The After simulation command field is particularly
useful for restarting ModelSim at the end of a simulation run.

To specify Tcl commands,

1 Click the Tcl tab of the Block Parameters dialog. The dialog display
appears as follows.

7–37



7 Modeling and Verifying a VHDL Design with Simulink

The Before simulation command text box includes an echo command
for reference purposes.

2 Enter one or more commands in the Before simulation command and
After simulation command text boxes. If you enter multiple commands
in a text box, separate them with a blank space. Do not separate commands
with a carriage return.

7–38



Configuring a VHDL Cosimulation Block

Notes

• You can include the quit -f command in an after simulation Tcl
command string or DO file to force ModelSim to shut down at the end
of a cosimulation session. To ensure that all other after simulation Tcl
commands specified for the model have an opportunity to execute,
specify all after simulation Tcl commands in a single cosimulation block
and place quit at the end of the command string or DO file.

• With the exception of quit, the command string or DO file that you
specify for either Before simulation command or After simulation
command cannot include commands that load a ModelSim project or
modify simulator state. For example, they cannot include commands
such as start, stop, or restart.

Alternatively, you can create a ModelSim DO file that lists Tcl commands
and then specify that file with the ModelSim do command as shown below.

7–39



7 Modeling and Verifying a VHDL Design with Simulink

3 Click Apply.

Applying Your Block Parameters Configuration Settings
and Closing the Dialog
After you enter your block parameters settings,

1 Review the content of each dialog tab.

2 When you are satisfied with the dialog content, click Apply to apply any
new settings.

3 Click OK to dismiss the dialog window.

Simulink applies the parameter settings and updates the VHDL Cosimulation
block display to include specified input and output ports. For example:

7–40



Configuring a VHDL Cosimulation Block

Before Configuration:

After Configuration:

To verify the connection with ModelSim and the signal names, click
Edit–>Update diagram or press Ctrl+D.

7–41



7 Modeling and Verifying a VHDL Design with Simulink

Running and Testing a Cosimulation Model in Simulink

To run and test a cosimulation model in Simulink, click Simulation–>Start

or the Start simulation tool in your Simulink model window. Simulink
runs the model and displays any errors that it detects.

If you need to reset a clock during a cosimulation, you can do so by entering
ModelSim force commands at the ModelSim command prompt or by
specifying ModelSim force commands in the After simulation command
text field on the Tcl tab of your Link for ModelSim block’s parameters dialog.

7–42



Using a Value Change Dump File for Design Verification

Using a Value Change Dump File for Design Verification

A value change dump (VCD) file logs changes to variable values, such as
the values of signals, in a file during a simulation session. VCD files can be
useful during design verification. Some examples of how you might apply
VCD files include

• For comparing results of multiple simulation runs, using the same or
different simulator environments

• As input to post-simulation analysis tools

• For porting areas of an existing design to a new design

VCD files can provide data that you might not otherwise acquire unless you
understood the details of a device’s internal logic. In addition, they include
data that can be graphically displayed or analyzed with postprocessing tools.
For example, the ModelSim vcd2wlf tool converts a VCD file to a WLF
file that you can view in a ModelSim wave window. Other examples of
postprocessing include the extraction of data pertaining to a particular section
of a design hierarchy or data generated during a specific time interval.

The To VCD File block provided in the Link for ModelSim block library serves
as a VCD file generator during a ModelSim and Simulink cosimulation
session. The block generates a VCD file that contains information about
changes to signals connected to the block’s input ports and names the file with
a specified filename.

Note The To VCD File block logs changes to states '1' and '0' only. The
block does not log changes to states 'X' and 'Z'.

The following sections discuss

• “Generating a VCD File” on page 7–44

• “VCD File Format” on page 7–45

• “A Sample VCD File Application ” on page 7–48

7–43



7 Modeling and Verifying a VHDL Design with Simulink

Generating a VCD File
To generate a VCD file:

1 Open your Simulink model, if it is not already open.

2 Identify where you want to add the To VCD File block. For example, you
might temporarily replace a scope with this block.

3 In the Simulink Library Browser, click the Link for ModelSim library. The
browser displays four types of blocks, one of which is the To VCD File block.

4 Copy the To VCD File block from the Library Browser to your model by
clicking the block and dragging it from the browser to your model window.

5 Connect the block ports to appropriate blocks in your Simulink model.

6 Configure the To VCD File block by specifying values for parameters in the
Block Parameters dialog.

a Open the Block Parameters dialog by double-clicking the block icon.
Simulink displays the following dialog.

b Specify a filename for the generated VCD file in the VCD file name
text box. If you specify a filename only, Simulink places the file in your
current MATLAB directory. Specify a complete pathname to place the
generated file in a different location. If you specify the same name for

7–44



Using a Value Change Dump File for Design Verification

multiple To VCD File blocks, Simulink automatically adds a numeric
postfix to uniquely identify each instance.

Note If you want the generated file to have a .vcd file type extension,
you must specify it explicitly.

c Specify an integer in the Number of input ports text box that indicates
the number of block input ports on which signal data is to be collected.
The block can handle up to 943 (830,584) bits, each of which maps to
a unique symbol in the VCD file.

In some cases, a single input port maps to multiple signals (and
symbols). This is necessary when the input port receives a vector of real
numbers or a fixed-point real number. For example, a signal of type
sfix16_En15 requires 16 symbols.

d Click OK.

7 Run the simulation. Simulink captures the simulation data in the VCD
file as the simulation runs.

For a description of the VCD file format see “VCD File Format” on page 7–45.
For a sample application of a VCD file, see “A Sample VCD File Application
” on page 7–48.

VCD File Format
The format of generated VCD files adheres to IEEE Std 1364–2001. The
following table describes the format

File Content Description

$date
23-Sep-2003 14:38:11
$end

Data and time the file was
generated.

7–45



7 Modeling and Verifying a VHDL Design with Simulink

File Content Description

$version Link for ModelSim version
1.0 $ end

Version of the VCD block
that generated the file.

$timescale 1 ns $ end
The time scale that
was used during the
simulation.

$scope module manchestermodel $end
The scope of the module
being dumped.

$var wire 1 ! Original Data [0] $end
$var wire 1 " Recovered Clock [0] $end
$var wire 1 # Recovered Data [0] $end
$var wire 1 $ Data Validity [0] $end

Variable definitions. Each
definition associates a
signal with character
identification code
(symbol). The symbols
are derived from printable
characters in the ASCII
character set from ! to ~.
Variable definitions also
include the variable type
(wire) and size in bits.

$upscope $end
Marks a change to the
next higher level in the
HDL design hierarchy.

$enddefinitions $end
Marks the end of the
header and definitions
section.

#0
Simulation start time.

7–46



Using a Value Change Dump File for Design Verification

File Content Description

$dumpvars
0!
0"
0#
0$

$end

Lists the values of all
defined variables at time
equals 0.

#630
1!

The starting point of
logged value changes.
Variable values are
checked at each simulation
time increment and are
logged if a change occurs.
This entry indicates that
at 63 nanoseconds, the
value of signal Original
Data changed from 0 to 1.

.

.

.
#1160
1#
1$

At 116 nanoseconds
the values of signals
Recovered Data and Data
Validity changed from 0
to 1.

$dumpoff
x!
x"
x#
x$

$end

Marks the end of the file
by dumping the values of
all variables as the value
x.

VCD files can grow very large for larger designs or smaller designs with
longer simulation runs. The size of a VCD file generated by the To VCD
File block is limited only by the maximum number of signals (and symbols)
supported, which is 943 (830,584).

7–47



7 Modeling and Verifying a VHDL Design with Simulink

A Sample VCD File Application
VCD files include data that can be graphically displayed or analyzed with
postprocessing tools. An example of such a tool is the ModelSim vcd2wlf tool,
which converts a VCD file to a WLF file that you can then view in a ModelSim
wave window. This section shows how you might apply the vcd2wlf tool.

1 Place a copy of the Manchester Receiver Simulink demo
manchestermodel.mdl in a writable directory.

2 Open your writable copy of the Manchester Receiver model. For example,
click File–>Open, select the file manchestermodel.mdl and click Open.
The Simulink model should appear as follows.

7–48



Using a Value Change Dump File for Design Verification

3 Open the Library Browser.

4 Replace the Signal Scope block with a To VCD File block.

a Delete the Signal Scope block. The lines representing the signal
connections to that block change to red dashed lines, indicating the
disconnection.

b Find and open the Link for ModelSim block library.

c Copy the To VCD File block from the Library Browser to the model by
clicking the block and dragging it from the browser to the location in
your model window previously occupied by the Signal Scope block.

7–49



7 Modeling and Verifying a VHDL Design with Simulink

d Double-click the To VCD File block icon. The Block Parameters dialog
appears.

e Type MyVCDfile.vcd in the VCD file name text box.

f Type 4 in the Number of input ports text box.

g Click OK. Simulink applies the new parameters to the block.

5 Connect the signals Original Data, Recovered Data, Recovered Clock,
and Data Validity to the block ports. The following display highlights the
modified area of the model.

7–50



Using a Value Change Dump File for Design Verification

6 Save the model.

7 Select the following command line from the instructional text that appears
in the demonstration model:

vsim('tclstart',manchestercmds,'socketsimulink',4442)

8 Paste the command in the MATLAB Command Window and execute the
command line. This command starts ModelSim and configures it for a
Simulink cosimulation session.

Note You might need to adjust the TCP/IP socket port. The port you
specify in the vsim command must match the value specified for the VHDL
Cosimulation block. To check the port setting for that block, double click
the block icon and then click the Comm tab in the Block Parameters dialog.

9 Start the simulation from the Simulink model window.

10 When the simulation is complete, locate, open, and browse through the
generated VCD file, MyVCDfile.vcd.

11 Close the VCD file.

12 Change your input focus to ModelSim and end the simulation.

13 Change the current directory to the directory containing the VCD file and
enter the following command at the ModelSim command prompt:

vcd2wlf MyVCDfile.vcd MyVCDfile.wlf

The vcd2wlf utility converts the VCD file to a WLF file that you display
with the command vsim -view.

14 In ModelSim, open the wave file MyVCDfile.wlf as dataset MyVCDwlf by
entering the following command:

vsim -view MyVCDfile.wlf

15 Open the MyVCDwlf data set with the following command:

add wave MyVCDfile:/*

A wave window appears showing the signals logged in the VCD file.

7–51



7 Modeling and Verifying a VHDL Design with Simulink

16 Click the Zoom Full icon to view the signal data. The wave window
should appear as follows.

17 Exit the simulation. One way of exiting is to enter the following command:

dataset close MyVCDfile
ModelSim closes the data set, clears the wave window, and exits the
simulation.

For more information on the vcd2wlf utility and working with data sets,
see the ModelSim documentation.

7–52



8

MATLAB Functions —
Alphabetical List



hdldaemon

Purpose Start the MATLAB server component of the Link for ModelSim interface

Syntax hdldaemon
hdldaemon('PropertyName', 'PropertyValue'...)
hdldaemon('status')
hdldaemon('kill')

Description Server Activation

hdldaemon starts the MATLAB server component of the Link for
ModelSim with the following default settings:

• Shared memory communication enabled

• Time resolution for the MATLAB simulation function output ports
set to scaled (type double)

Use shared memory communication when your application
configuration consists of a single system.

Note The communication mode that you specify (shared memory or
TCP/IP sockets) must match what you specify for the communication
mode when you issue the matlabtb or matlabtbeval command in
ModelSim. In addition, if you specify TCP/IP socket mode, you must also
identify a socket port to be used for establishing links. You can choose
and specify a socket port yourself, or you can use an option that instructs
the operating system to identify an available socket port for you.
Regardless of how the socket port is identified, the socket you specify
with the ModelSim command must match the socket being used by the
server. For more information on modes of communication, see “Modes of
Communication” on page 1–8. For more information on establishing
the ModelSim end of the communication link, see “Initializing the
Simulator for a MATLAB Test Bench Session” on page 6–16.

8–2



hdldaemon

hdldaemon('PropertyName', 'PropertyValue'...) starts the MATLAB
server component of the Link for ModelSim with property-value pair
settings that specify the mode of the communication for the link between
MATLAB and ModelSim and the time resolution for the MATLAB
simulation function output ports. See Property Name/Property Value
Pairs for details.

Link Status

hdldaemon('status') returns the following message indicating that a
link (connection) exists between MATLAB and ModelSim:

HDLDaemon socket server is running on port 4449 with 0

connections

You can also use this function to check on the mode of communication
being used, the number of existing connections, and that an interprocess
communication identifier (ipc_id) being used for a link by assigning the
return value of hdldaemon to a variable. The ipc_id identifies a port
number for TCP/IP socket links or the file system name for a shared
memory communication channel. For example:

x=hdldaemon('status')
x =

comm: 'sockets'
connections: 0

ipc_id: '4449'

This function call indicates that the server is using TCP/IP socket
communication with socket port 4449 and is running with no active
ModelSim clients. If a shared memory link is in use, the value of comm
is 'shared memory' and the value of ipc_id is a file system name for
the shared memory communication channel.

Server Shutdown

hdldaemon('kill') Shuts down the MATLAB server without shutting
down MATLAB.

8–3



hdldaemon

Property
Name/Property
Value Pairs

'socket', tcp_spec
Specifies the TCP/IP socket mode of communication for the link
between MATLAB and ModelSim. If you omit this argument, the
server uses the shared memory mode of communication.

Note You must use TCP/IP socket communication when your
application configuration consists of multiple computing systems.

The tcp_spec can be a TCP/IP port number, TCP/IP port alias
or service name, or the value zero, indicating that the port is
to be assigned by the operating system. Some valid tcp_spec
examples follow:

Option Examples

Port number '4449' or 4449

Alias or service
name

'MATLAB Service'

Operating system
assigned

'0' or 0

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1–17.

Note If you specify the operating system option ('0' or 0), use
hdldaemon('status') to acquire the assigned socket port number.
You must specify this port number when you issue a link request
with the matlabtb or matlabtbeval command in ModelSim.

'time', 'sec' | 'time', 'int64'
Specifies the time resolution for MATLAB function output ports
and simulation times (tnow).

8–4



hdldaemon

Specify... For...

'time' 'sec' (default) A double value that is scaled
to seconds based on the current
ModelSim simulation resolution

'time' 'int64' 64–bit integer representing the
number of simulation steps

If you omit this argument, the server uses scaled resolution time.

Examples The following function call starts the MATLAB server with shared
memory communication enabled and a 64–bit time resolution format for
the MATLAB function’s output ports.:

hdldaemon('time', 'int64')

The following function call starts the MATLAB server with TCP/IP
socket communication enabled on socket port 4449. Although it is not
necessary to use TCP/IP socket communication on a single-computer
application, you can use that mode of communication locally. A time
resolution is not specified. Thus, the default, scaled simulation time
resolution is applied to the MATLAB function’s output ports:

hdldaemon('socket', 4449)

The following function call starts the MATLAB server with TCP/IP
socket communication enabled on port 4449. A 64–bit time resolution
format is also specified:

hdldaemon('socket', 4449, 'time', 'int64')

8–5



setupmodelsim

Purpose Configure or deconfigure ModelSim for use with MATLAB and Simulink

Syntax setupmodelsim
setupmodelsim('PropertyName', 'PropertyValue'...)

Description setupmodelsim starts an interactive installation script that configures
ModelSim for use with the MATLAB and Simulink features of the Link
for ModelSim.

setupmodelsim('PropertyName', 'PropertyValue'...) starts an
interactive or programmatic script that configures or deconfigures
ModelSim for use with the MATLAB and Simulink. If you specify only
the 'action' property, the script runs in interactive mode.

The function modifies an installed version of ModelSim such that it
subsequently starts ready to use the Link for ModelSim based on
settings of property name/value pairs that specify

• Whether the function configures or deconfigures ModelSim

• Tcl commands to start ModelSim

• The vsim executable

After you call this function, you can use Link for ModelSim commands
from the ModelSim environment to

• Load instances of VHDL entities for simulations that use MATLAB
or Simulink for verification or cosimulation

• Initiate MATLAB test bench sessions for loaded instances

• Terminate MATLAB test bench sessions

• Apply a VHDL wrapper around Verilog modules to be compiled and
used with Link for ModelSim (see the wrapverilog command)

8–6



setupmodelsim

Property
Name/Property
Value Pairs

'action', 'install'
Configures ModelSim for use with the MATLAB and Simulink
by modifying an installed version of ModelSim such that it
subsequently starts ready to use the Link for ModelSim.

'action', 'uninstall'
Deconfigures ModelSim for use with the MATLAB and Simulink.

'tclstart', 'tcl_commands'
Specifies one or more Tcl commands to execute during ModelSim
startup. Specify a command string or a cell array of command
strings that is to be appended to the ModelSim startup file.

'vsimdir', 'pathname'
Specifies the pathname to the ModelSim simulator executable
(vsim.exe) to be started. By default, the function uses the first
version of vsim.exe that it finds on the system path (defined by
the path variable) . Use this option to start different versions of
the ModelSim simulator or if the version of the simulator you
want to run does not reside on the system path.

Examples The following function call starts the interactive installation script that
configures ModelSim for use with the MATLAB and Simulink:

setupmodelsim

The following function call configures ModelSim such that it
subsequently starts ready for use with MATLAB and Simulink. Based
on the specified property data, ModelSim starts vsim from its default
executable and creates a temporary DO file in a temporary directory for
the Link for ModelSim commands. The Link for ModelSim commands
are specified with the 'tclstart' property and include

• A vsimmatlab command that loads an instance of the VHDL entity
parse in library work for MATLAB verification.

• A matlabtb command that initiates the test bench session for an
instance of entity parse, using TCP/IP socket communication on port
4449 and a test bench timing value of 10 nanoseconds.

8–7



setupmodelsim

setupmodelsim('action','install','tclstart','vsimmatlab
work.parse; matlabtb parse 10 ns -socket 4449')

8–8



vsim

Purpose Start and configure ModelSim for use with the Link for ModelSim

Syntax vsim('PropertyName', 'PropertyValue'...)

Description vsim('PropertyName', 'PropertyValue'...) starts and configures the
ModelSim simulator (vsim) for use with the MATLAB and Simulink
features of the Link for ModelSim. The initial directory in ModelSim
matches your MATLAB current directory.

After you call this function, you can use ModelSim commands to

• Load instances of VHDL entities for simulations that use MATLAB
for verification

• Load instances of VHDL entities for simulations that use Simulink
for cosimulation

• Apply a VHDL wrapper around Verilog modules compiled and used
with Link for ModelSim (see the wrapverilog command)

The property name/property value pair settings allow you to customize
the Tcl commands used to start ModelSim, the vsim executable to be
used, the path and name of the DO file that stores the start commands,
and for Simulink applications, details about the mode of communication
to be used by the applications.

Property
Name/Property
Value Pairs

'tclstart', 'tcl_commands'
Specifies one or more Tcl commands to execute after ModelSim
launches. Specify a command string or a cell array of command
strings.

'vsimdir', 'pathname'
Specifies the pathname to the ModelSim simulator executable
(vsim.exe) to be started. By default, the function uses the first
version of vsim.exe that it finds on the system path (defined by
the path variable) . Use this option to start different versions of
the ModelSim simulator or if the version of the simulator you
want to run does not reside on the system path.

8–9



vsim

'startupfile', 'pathname'
Specifies a DO macro file that defines the behavior of the
ModelSim commands vsimmatlab and vsimulink. The DO file
consists of some general-purpose Tcl commands for launching
ModelSim and any commands you specify with the 'tclstart'
property. If you omit this property, the function creates a
temporary file that is overwritten each time ModelSim starts. If
you specify a name for the DO file, later you can use the file to
start ModelSim from the command line as shown in the following
syntax:

vsim -gui -do do_file

'socketsimulink', 'tcp_spec'
Specifies TCP/IP socket communication for links between
ModelSim and Simulink. For TCP/IP socket communication
on a single computing system, the tcp_spec can consist of just
a TCP/IP port number or service name. If you are setting up
communication between computing systems, you must also specify
the name or Internet address of the remote host. The following
table lists different ways of specifying tcp_spec.

Format Example

<port-num> 4449

<port-alias> matlabservice

<port-num>@<host> 4449@compa

<host>:<port-num> compa:4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1–17

If ModelSim and Simulink are running on the same computing
system, you have the option of using shared memory for

8–10



vsim

communication. Shared memory is the default mode of
communication and takes effect if you omit socketsimulink
tcp_spec from the function call.

Note The function applies the communication mode specified
by this property to all invocations of Simulink from ModelSim.

Examples The following function call sequence changes the directory location
to VHDLproj and then calls the function vsim. Because the call to
vsim omits the 'vsimdir' and 'startupfile' properties, vsim uses the
default vsim executable and creates a temporary DO file in a temporary
directory. The 'tclstart' property specifies a Tcl command that loads
an instance of a VHDL entity for MATLAB verification.

• The vsimmatlab command loads an instance of the VHDL entity
parse in library work for MATLAB verification.

• The matlabtb command initiates the test bench session for an
instance of entity parse, using TCP/IP socket communication on port
4449 and a test bench timing value of 10 nanoseconds.

cd VHDLproj % change directory to ModelSim project directory
vsim('tclstart','vsimmatlab work.parse; matlabtb parse 10 ns
-socket 4449')

The following function call sequence changes the directory location to
VHDLproj and then calls the function vsim. Because the call to vsim
omits the 'vsimdir' and 'startupfile' properties, vsim uses the default
vsim executable and creates a DO file in a temporary directory. The
'tclstart' property specifies a Tcl command that loads the VHDL entity
parse in library work for cosimulation between vsim and Simulink. The
'socketsimulink' property specifies that TCP/IP socket communication
on the same computer is to be used for links between Simulink and
ModelSim, using socket port 4449:

8–11



vsim

cd VHDLproj % change directory to ModelSim project directory
vsim('tclstart','vsimulink work.parse','socketsimulink','4449',)

8–12



9

ModelSim Commands —
Alphabetical List



matlabtb

Purpose Initiate a MATLAB test bench session for an instance of a VHDL entity
based on specified test bench stimuli

Syntax matlabtb <instance> [<time-specs>] [-socket <tcp-spec>]
[-rising <port>[,<port>...]] [-falling <port>[,<port>,...]]
[-sensitivity <port>[,<port>,...]] [-mfunc <name>]

Arguments <instance>
Specifies the instance of a VHDL entity that attaches to a
MATLAB function. By default, matlabtb attaches the instance to
a MATLAB function that has the same name as the instance. For
example, if the instance is myfirfilter, matlabtb associates the
instance with the MATLAB function myfirfilter. Alternatively,
you can specify a different MATLAB function with -mfunc.

<time-specs>
Specifies a combination of time specifications consisting of any
or all of the following:

9–2



matlabtb

<timen>,... Specifies one or more discrete time values
at which the specified MATLAB function
is called. Each time value is relative to
the current simulation time. Even if you
do not specify a time, the command calls
the MATLAB function once at the start of
the simulation.

-repeat <time> Specifies that the MATLAB function be
called repeatedly based on the specified
<timen>,... pattern. The time values
are relative to the value of tnow at the
time the MATLAB function is initially
called.

-cancel <time> Specifies a time at which the specified
MATLAB function stops executing. The
time value is relative to the value of
tnow at the time the MATLAB function
is initially called. If you do not specify
a cancel time, the command calls the
MATLAB function.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
ModelSim and MATLAB. For TCP/IP socket communication on
a single computing system, the <tcp_spec> can consist of just a
TCP/IP port number or service name (alias). If you are setting
up communication between computing systems, you must also
specify the name or Internet address of the remote host that is
running the MATLAB server (hdldaemon). The following table
lists different ways of specifying <tcp_spec>.

Format Example

<port-num> 4449

<port-alias> matlabservice

9–3



matlabtb

Format Example

<port-num>@<host> 4449@compa

<host>:<port-num> compa:4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1–17.

If ModelSim and MATLAB are running on the same computing
system, you have the option of using shared memory for
communication. Shared memory is the default mode of
communication and takes effect if you omit -ocket <tcp_spec>
from the command line.

Note The communication mode that you specify with the
matlabtb command must match what you specify for the
communication mode when you issue the hdldaemon command in
MATLAB. For more information on modes of communication, see
“Modes of Communication” on page 1–8. For more information
on establishing the MATLAB end of the communication link, see
“Starting the MATLAB Server” on page 6–7.

-rising <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when
any of the specified signals experiences a rising edge — changes
from '0' to '1'. Specify -rising with the pathnames of one or more
signals defined as a logic type — std_logic, bit, x01, and so on.

-falling <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals experiences a falling edge — changes from
'1' to '0'. Specify -falling with the pathnames of one or more
signals defined as a logic type — std_logic, bit, x01, and so on.

9–4



matlabtb

-sensitivity <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals changes state. Specify sensitivity with
the pathnames of one or more signals. Signals in the sensitivity
list can be any type and can be at any level of the VHDL hierarchy.

-mfunc <name>
The name of the MATLAB function that is attached to the entity
you specify for instance. If you omit this argument, matlabtb
attaches the entity to a MATLAB function that has the same
name as the entity. For example, if the entity is myfirfilter,
matlabtb associates the entity with the MATLAB function
myfirfilter. If you omit this argument and matlabtb does not
find a MATLAB function with the same name, the command
generates an error message.

Description The matlabtb command,

1 Starts the ModelSim client component of the Link for ModelSim.

2 Associates a specified instance of a VHDL entity created in ModelSim
with a MATLAB MATLAB function.

3 Creates a process that schedules invocations of the specified
MATLAB function.

Note For ModelSim to establish a communication link with
MATLAB, the MATLAB server, hdldaemon, must be running with the
same communication mode and, if appropriate, the same TCP/IP socket
port as you specify with the matlabtb command.

This command cancels any pending events scheduled by a previous
matlabtb command that specified the same instance. For example,
if you issue the command matlabtb for instance foo, all previously
scheduled events initiated by matlabtb on foo are canceled.

9–5



matlabtb

Examples The following command starts the ModelSim client component of the
Link for ModelSim, associates an instance of the entity myfirfilter
with the MATLAB function myfirfilter, and initiates a local TCP/IP
socket-based test bench session using TCP/IP port 4449. Based on the
specified test bench stimuli, myfirfilter.m executes 5 nanoseconds
from the current time, and then repeatedly every 10 nanoseconds (when
t equals 0, 5, 15, 25, and so on).

vsim> matlabtb myfirfilter 5 ns -repeat 10 ns -socket 4449

The following command starts the ModelSim client component of the
Link for ModelSim, and initiates a remote TCP/IP socket-based session
using remote MATLAB host compb and TCP/IP port 4449. Based on the
specified test bench stimuli, myfirfilter.m executes 10 nanoseconds
from the current time, each time signal \work\fclk experiences a rising
edge, and each time signal \work\din changes state.

vsim> matlabtb myfirfilter 10 ns -rising \work\fclk
-sensitivity \work\din -socket 4449@compa

9–6



matlabtbeval

Purpose Initiate an immediate call to a MATLAB function on behalf of an
instance of a VHDL entity

Syntax matlabtbeval <instance> [-socket <tcp_spec>] [-mfunc <name>]

Arguments <instance>
Specifies the instance of a VHDL entity that attaches to a
MATLAB function. By default, matlabtbeval attaches the
instance to a MATLAB function that has the same name as
the instance. For example, if the instance is myfirfilter,
matlabtbeval associates the instance with the MATLAB function
myfirfilter. Alternatively, you can specify a different MATLAB
function with the -mfunc property.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
ModelSim and MATLAB. For TCP/IP socket communication on
a single computing system, the <tcp_spec> can consist of just a
TCP/IP port number or service name (alias). If you are setting
up communication between computers, you must also specify the
name or Internet address of the remote host. The following table
lists different ways of specifying <tcp_spec>.

Format Example

<port-num> 4449 on this computer

<port-alias> matlabservice on this computer

<port-num>@<host> 4449@compa

<host>:<port-num> compa:4449

<port-alias>@<host-ia>matlabservice@123.34.55.23

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1–17.

9–7



matlabtbeval

If ModelSim and MATLAB are running on the same computer,
you have the option of using shared memory for communication.
Shared memory is the default mode of communication and takes
effect if you omit -socket <tcp-spec> from the command line.

Note The communication mode that you specify with the
matlabtbeval command must match what you specify for the
communication mode when you call the hdldaemon command
to start the MATLAB server. For more information on modes
of communication, see “Modes of Communication” on page 1–8.
For more information on establishing the MATLAB end of the
communication link, see “Starting the MATLAB Server” on page
6–7.

-mfunc <name>
The name of the MATLAB function that is attached to the
entity you specify for instance. If you omit this argument,
matlabtbeval attaches the entity to a MATLAB function that
has the same name as the entity. For example, if the entity
is myfirfilter, matlabtbeval associates the entity with the
MATLAB function myfirfilter . If you omit this argument and
matlabtbeval does not find a MATLAB function with the same
name, the command displays an error message.

Description The matlabtbeval command,

1 Starts the ModelSim client component of the Link for ModelSim.

2 Associates a specified instance of a VHDL entity created in ModelSim
with a MATLAB function.

3 Executes the specified MATLAB function once and immediately on
behalf of the specified entity instance.

9–8



matlabtbeval

Note For ModelSim to establish a communication link with
MATLAB, the MATLAB hdldaemon must be running with the same
communication mode and, if appropriate, the same TCP/IP socket port
as you specify with the matlabtbeval command.

Examples The following command starts the ModelSim client component of the
Link for ModelSim, associates an instance of the entity myfirfilter
with the function myfirfilter.m, and uses a local TCP/IP socket-based
communication link to TCP/IP port 4449 to execute the function
myfirfilter.m.

vsim> matlabtbeval myfirfilter -socket 4449

The following command starts the ModelSim client component of the
Link for ModelSim, associates an instance of the entity filter with
the function myfirfilter.m, and uses a remote TCP/IP socket-based
communication link to host compb and TCP/IP port 4449 to execute the
function myfirfilter.m.

vsim> matlabtbeval myfirfilter -socket 4449@compa

9–9



nomatlabtb

Purpose Terminate a MATLAB test bench session that was initiated with
matlabtb

Syntax nomatlabtb

Description The unmatlabtb command terminates all active test bench sessions.

Examples The following command terminates all test bench sessions:

vsim> nomatlabtb

9–10



vsimmatlab

Purpose Load an instance of a VHDL entity for verification with MATLAB

Syntax vsimmatlab <instance> [<vsim_args>]

Arguments <instance>
Specifies the instance of a VHDL entity to load for verification.

<vsim_args>
Specifies one or more vsim command arguments. For details, see
the description of vsim in the ModelSim documentation.

Description The vsimmatlab command loads the specified instance of an entity for
verification and sets up ModelSim so it can establish a communication
link with MATLAB. ModelSim opens a simulation workspace and
displays a series of messages in the command window as it loads the
entity’s packages and architectures.

Examples The following command loads the entity instance parse from library
work for verification and sets up ModelSim so it can establish a
communication link with MATLAB.

ModelSim> vsimmatlab work.parse

9–11



vsimulink

Purpose Load an instance of a VHDL entity for cosimulation with Simulink

Syntax vsimulink <instance> [-socket <tcp_spec>]

Argument <instance>
Specifies the instance of a VHDL entity to load for cosimulation.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
ModelSim and MATLAB. This setting overrides the setting
specified with the MATLAB vsim function. The <tcp_spec> can
consist of a TCP/IP socket port number or service name (alias).
For example, you might specify port number 4449 or the service
name matlabservice.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 1–17.

If ModelSim and MATLAB are running on the same computer,
you have the option of using shared memory for communication.
Shared memory is the default mode of communication and takes
effect if you omit -socket <tcp-spec> from the command line.

Note The communication mode that you specify with the
vsimulink command must match what you specify for the
communication mode when you configure Link for ModelSim
blocks in your Simulink model. For more information on modes
of communication, see “Modes of Communication” on page 1–8.
For more information on establishing the Simulink end of the
communication link, see “Configuring the Communication Link”
on page 7–33.

Description The vsimulink command loads the specified instance of an entity for
cosimulation and sets up ModelSim so it can establish a communication
link with Simulink. ModelSim opens a simulation workspace and

9–12



vsimulink

displays a series of messages in the command window as it loads the
entity’s packages and architectures.

Examples The following command loads the entity instance parse from library
work for cosimulation and sets up ModelSim so it can establish a
communication link with Simulink.

ModelSim> vsimulink work.parse

9–13



wrapverilog

Purpose Apply a VHDL wrapper to a Verilog module

Syntax wrapverilog <verilog_module> [-nocompile]

Argument <verilog_module>
Specifies the Verilog module to which a VHDL wrapper is to be
applied. The module you specify must be in a valid ModelSim
design library when you issue the command.

-nocompile
Suppresses automatic compilation of the resulting VHDL file,
verilog_module_wrap.vhd.

Description The wrapverilog command applies a VHDL wrapper to the specified
Verilog module and then automatically compiles the resulting VHDL
file. You can then use your wrapped Verilog module with the Link for
ModelSim.

Examples The following command applies a VHDL wrapper to Verilog module
myverilogmod.v and writes the output to myverilogmod_wrap.vhd. The
-nocompile option suppresses automatic compilation.

ModelSim> wrapverilog myverilogmod.v -nocompile

9–14



10

Simulink Blocks —
Alphabetical List



To VCD File

Purpose Generate a value change dump (VCD) file

Library Link for ModelSim

Description The To VCD File block generates a VCD file that contains information
about changes to signals connected to the block’s input ports and names
the file with the specified filename. VCD files can be very useful during
design verification. Some examples of how you might apply VCD files
include

• For comparing results of multiple simulation runs, using the same or
different simulator environments

• As input to post-simulation analysis tools

• For porting areas of an existing design to a new design

In addition, VCD files include data that can be graphically displayed
or analyzed with postprocessing tools. For example, the ModelSim
vcd2wlf tool converts a VCD file to a WLF file that you can view in a
ModelSim wave window. Other examples of postprocessing include
the extraction of data pertaining to a particular section of a design
hierarchy or data generated during a specific time interval.

Using the Block Parameters dialog, you can specify the following:

• The filename to be used for the generated file

• The number of block input ports that are to receive signal data

VCD files can grow very large for larger designs or smaller designs
with longer simulation runs. However, the size of a VCD file generated
by the To VCD File block is limited only by the maximum number of
signals (and symbols) supported, which is 943 (830,584). Each bit maps
to one symbol.

For a description of the VCD file format see “VCD File Format” on
page 7–45.

10–2



To VCD File

Dialog Box

VCD file name
The filename to be used for the generated VCD file. If you specify
a filename only, Simulink places the file in your current MATLAB
directory. Specify a complete pathname to place the generated file
in a different location. If you specify the same name for multiple
To VCD File blocks, Simulink automatically adds a numeric
postfix to uniquely identify each instance.

Note If you want the generated file to have a .vcd file type
extension, you must specify it explicitly.

Number of input ports
The number of block input ports on which signal data is to be
collected. The block can handle up to 943 (830,584) signals, each
of which maps to a unique symbol in the VCD file.

In some cases, a single input port maps to multiple signals (and
symbols). This occurs when the input port receives one of the
following:

• Vector of real numbers

• Fixed-point real number

10–3



VHDL Cosimulation

Purpose Cosimulate a hardware component by applying input signals to and
reading output signals from a VHDL model under simulation in
ModelSim

Library Link for ModelSim

Description The VHDL Cosimulation block cosimulates a hardware component by
applying input signals to and reading output signals from a VHDL
model under simulation in ModelSim. You can use this block to model
a source or sink device by configuring the block with input or output
ports only.

Note The VHDL Sink and VHDL Source icons in the Link for
ModelSim block library are provided for convenience only and map
directly to the VHDL Cosimulation block.

Using tabbed panels on the block’s dialog box, you can configure the
following:

• Block input and output ports that correspond to signals, including
internal signals, of a VHDL model and an output sample time

• Type of communication and communication settings to be used for
exchanging data between simulators

• Rising-edge or falling-edge clocks to apply to your model

• Tcl commands that you want to run before and after the simulation

The Ports tab provides fields for mapping signals of your VHDL design
to input and output ports in your block. The signals that you map can
be at any level of the VHDL design hierarchy. Simulink deposits an
input port signal on a ModelSim signal at the signal’s sample rate.
Conversely, Simulink reads an output port signal from a specified
ModelSim signal at the Simulink sample rate.

10–4



VHDL Cosimulation

In general, Simulink handles port sample periods as follows:

• If an input port is connected to a signal that has an explicit sample
period, based on forward propagation, Simulink applies that rate
to the port.

• If an input port is connected to a signal that does not have an explicit
sample period, Simulink assigns a sample period that is equal to the
least common multiple (LCM) of all identified input port sample
periods for the model.

• After Simulink sets the input port sample periods, it applies a
user-specified output sample time to all output ports. If you do not
specify an output sample time, Simulink applies the fastest input
sample period to all output ports.

The Comm tab specifies the mode of communication to be
used between Simulink and ModelSim. If you use TCP socket
communication, this tab also provides fields for specifying a socket
port and, for remote communication, the host name of the computer
running ModelSim.

You can create optional rising-edge and falling-edge clocks that apply
stimuli to your cosimulation model with the Clocks tab. Simulink
attempts to create a clock that has a 50% duty cycle and a predefined
phase that is inverted for the falling edge case. If necessary, Simulink
degrades the duty cycle, as you approach the resolution limit of
the ModelSim simulation, with a worst case duty cycle of 66% for
a sample period of T=3.

The following figure shows a timing diagram that includes
rising-edge and falling-edge clocks with a Simulink sample period of
T=10 and a ModelSim resolution limit of 1 ns. The figure also shows
that given those timing parameters, the clock duty cycle is 50%.

10–5



VHDL Cosimulation

1 ns

50% Duty Cycle

Rising Edge Clock

Simulink Sample Period, T=10

ModelSim Resolution Limit

1

t

1

Falling Edge Clock

The Tcl tab provides a way of specifying tools command language
(Tcl) commands to be executed before and after ModelSim simulates
the VHDL component of your Simulink model. The before command
field on this tab is particularly useful for simulation initialization and
startup operations, but cannot be used to change simulation state.

Dialog Box The Block Parameters dialog box consists of four tabbed panes of
configuration options:

• Ports Tab

• Comm Tab

• Clocks Tab

• Tcl Tab

10–6



VHDL Cosimulation

Ports Tab

Block input ports
Signals of your VHDL model that are to be driven by Simulink.
Simulink deposits values on the specified ModelSim signal at
the signal’s sample rate.

Note Leave this field blank if you are using the block to model
a source device.

Specify each port of interest as a test signal pathname, using
ModelSim pathname syntax, and enter one pathname per line. A
sample pathname for an input port might be /manchester/samp.

10–7



VHDL Cosimulation

The ports that you map can be at any level of the VHDL design
hierarchy.

Note When you define a block input port, make sure that only
one source is set up to force input to that signal. For example, you
should avoid defining an input port that has multiple instances.
If multiple sources force input to a single signal, your simulation
model may produce unexpected results.

Block output ports
Signals of your VHDL model that are to be read by Simulink.
Simulink reads an output port signal from the specified ModelSim
signal at the Simulink signal’s sample rate. You can specify a
sample rate or -1 in the Output sample time text field. The
value -1 instructs the block to inherit the output sample rate
from the input rate.

Note Leave this field blank to configure a cosimulation sink
block.

Specify each port of interest as a test signal pathname, using
ModelSim pathname syntax, and enter one pathname per line. A
sample pathname for an output port might be /manchester/data.

The ports that you map can be at any level of the VHDL design
hierarchy.

Output sample time
The time interval (ticks) between consecutive samples applied to
all output ports. The resolution of the time interval is equal to the
simulator resolution that is set for ModelSim. To determine the
resolution, at the ModelSim prompt, enter echo $resolution or

10–8



VHDL Cosimulation

report simulator state. The default for this field depends on
how you are using the block.

If the Block Has... The Default Is...

Input and output ports -1, inherit the sample time of the
signal source

Input ports only (sink) 0, has no impact

Output ports only
(source)

2

Comm Tab

10–9



VHDL Cosimulation

ModelSim running on this computer
If selected, the block configuration assumes Simulink and
ModelSim are running on the same computer. When both
applications run on the same computer, you have the option of
using shared memory or TCP sockets for the communication
channel between the two applications.

Host name
If Simulink and ModelSim are running on different computers,
this text field specifies the host name of the computer that is
running your VHDL simulation in ModelSim.

Shared memory
If selected, Simulink and ModelSim use the shared memory
for communication. To select this option, you must also select
ModelSim running on this computer. For more information
on modes of communication, see “Modes of Communication” on
page 1–8.

Port number or service
A valid port number or service for your computer system. For
information on choosing TCP socket ports, see “Choosing TCP/IP
Socket Ports” on page 1–17.

10–10



VHDL Cosimulation

Clocks Tab

Rising-edge clocks
One or more rising-edge clocks that drive values to the VHDL
signals that you are modeling, using the deposit method. Specify
each clock as a signal pathname, using ModelSim pathname
syntax, and enter one pathname per line. A sample pathname for
a clock might be /manchester/clk. You can include the ModelSim
simulator prefix sim:, but it is not required.

Falling-edge clocks
One or more falling-edge clocks that drive deposit values to the
VHDL signals that you are modeling. Specify each clock as a
signal pathname, using ModelSim pathname syntax, and enter
one pathname per line. A sample pathname for a clock might

10–11



VHDL Cosimulation

be /manchester/clk. You can include the ModelSim simulator
prefix sim:, but it is not required.

Tcl Tab

Before simulation command
A Tcl command line to be executed before ModelSim simulates
the VHDL component of your Simulink model. You can specify
multiple commands by appending each command with a semicolon
(;), the standard Tcl concatenation operator.

Alternatively, you can create a ModelSim DO file that lists Tcl
commands and then specify that file with the ModelSim do
command as follows:

10–12



VHDL Cosimulation

do mycosimstartup.do

Use of this field can range from something as simple as a
one-line echo command to confirm that a simulation is running
to a complex script that performs an extensive simulation
initialization and startup sequence.

Note The command string or DO file that you specify for
this parameter cannot include commands that load a ModelSim
project or modify simulator state. For example, they cannot
include commands such as start, stop, or restart.

After simulation command
A Tcl command line to be executed before ModelSim simulates
the VHDL component of your Simulink model. You can specify
multiple commands by appending each command with a semicolon
(;), the standard Tcl concatenation operator.

Alternatively, you can create a ModelSim DO file that lists Tcl
commands and then specify that file with the ModelSim do
command as follows:

do mycosimcleanup.do

10–13



VHDL Cosimulation

Notes

• You can include the quit -f command in an after simulation
Tcl command string or DO file to force ModelSim to shut down
at the end of a cosimulation session. To ensure that all other
after simulation Tcl commands specified for the model have
an opportunity to execute, specify all after simulation Tcl
commands in a single cosimulation block and place quit at the
end of the command string or DO file.

• With the exception of quit, the command string or DO file that
you specify cannot include commands that load a ModelSim
project or modify simulator state. For example, they cannot
include commands such as start, stop, or restart.

10–14



Index

A
action property

description of 8–6
setting up ModelSim during installation

with 1–21
addresses, Internet 1–17
After simulation command parameter

description of 10–4
specifying block Tcl commands with 7–37

application software 1–18
application specific integrated circuits

(ASICs) 1–2
applications 1–3

coding Link for ModelSim 5–1
overview of 5–2

programming Link for ModelSim 5–1
overview of 5–2

arguments
for matlabtb command 9–2
for matlabtbeval command 9–7
for vsimmatlab command 9–11
for vsimulink command 9–12
for wrapverilog command 9–14

arrays
converting to 5–18
indexing elements of 5–9
of VHDL data types 5–5

ASICs (application specific integrated
circuits) 1–2

B
Before simulation command parameter

description of 10–4
specifying block simulation Tcl commands

with 7–37
behavioral model 1–3
BIT data type 5–5

conversion of 5–9
converting to 5–18

bit vectors
converting for MATLAB 5–17
converting to 5–18

BIT_VECTOR data type 5–5
conversion of 5–9
converting for MATLAB 5–17
converting to 5–18

Block input ports parameter
description of 10–4
mapping signals with 7–29

block latency 7–11
block library

description of 7–24
Link for ModelSim 1–5

Block output ports parameter
description of 10–4
mapping signals with 7–29

Block Parameters dialog
for To VCD File block 7–44
for VHDL Cosimulation block 7–28

block ports
mapping signals to 7–29
requirements for VHDL Cosimulation

blocks 7–26
blocks

To VCD File
configuring 7–44
description of 10–2
generating VCD files with 7–44

VHDL Cosimulation
applying configuration settings

for 7–40
configuring 7–26
description of 10–4

blocksets
for creating hardware models 7–5
for EDA applications 7–5
installing 1–19

bp ModelSim command 6–22
Break button, ModelSim 6–22

Index–1



Index

Break option, ModelSim 6–22
breakpoints 6–22

C
callback specification 5–13
callback timing 6–14
-cancel option 9–2
CHARACTER data type 5–5

conversion of 5–9
checklists

environment requirements 1–12
VHDL Cosimulation block

requirements 7–26
client

for MATLAB and ModelSim links 1–5
for Simulink and ModelSim links 1–7

client/server environment 1–5
clocks

requirements for VHDL Cosimulation
blocks 7–26

specifying for VHDL Cosimulation
blocks 7–35

Clocks tab
configuring block clocks with 7–35
description of 10–4

column-major numbering 5–9
comm status field

checking with hdldaemon function 6–5
description of 8–2

Comm tab
configuring block communication

with 7–33
description of 10–4

commands, ModelSim 9–1
See also ModelSim commands

communication
configuring for blocks 7–33
features 1–5

initializing for ModelSim and MATLAB
session 6–16

modes of 1–8
requirements for VHDL Cosimulation

blocks 7–26
socket ports for 1–17

communication channel
checking identifier for 6–5

communication modes
checking 6–5
specifying for Simulink links 7–20
specifying for VHDL Cosimulation

block 7–26
specifying with hdldaemon function 6–7

Communications Blockset
as optional software 1–18
using for EDA applications 7–5

compilation, VHDL code 5–7
compiler, VHDL 5–7
components 1–5
composite data types

conversions of 5–9
VHDL 5–5

configuration information 1–23
configurations

deciding on 1–15
multiple-link 1–15
single-system 1–15
valid for MATLAB and ModelSim 1–15
valid for Simulink and ModelSim 1–16

connections status field
checking with hdldaemon function 6–5
description of 8–2

connections, link
checking number of 6–5
TCP/IP socket 1–17

Continue button, MATLAB 6–22
Continue option 6–22
continuous signals 7–9
convolution 4–6

Index–2



Index

convolver, I/Q
function for 4–19
VHDL code for 4–11

cosimulation 1–5
configuring a VHDL Cosimulation block

for 7–26
controlling MATLAB 6–1

overview of 6–3
loading VHDL entities for 7–23
logging changes to signal values

during 7–43
requirements for 7–26
running Simulink and ModelSim

tutorial 3–14
shutting down Simulink and ModelSim

tutorial 3–17
starting MATLAB 6–1

overview of 6–3
starting with Simulink 7–42

cosimulation block 7–26
See also VHDL Cosimulation block

cosimulation environment 1–5

D
data types

conversions of 5–9
converting for MATLAB 5–17
converting for ModelSim 5–18
unsupported VHDL 5–5
VHDL port 5–5

verifying 5–15
dbstop function 6–22
decoder

function for 4–23
script code for 4–31
VHDL code for 4–14

delta time 7–11
demos 1–25

Manchester receiver 1–32

MATLAB and ModelSim 1–27
random number generator 1–27
Simulink and ModelSim 1–32

deposit
changing signals with 7–8
for iport parameter 5–13
with force commands 6–21

design process, hardware 1–3
dialogs

for To VCD File block 10–2
for VHDL Cosimulation block 10–4

discrete blocks 7–9
do command 7–37
DO files

saving startup commands to 1–22
specifying for VHDL Cosimulation

blocks 7–37
documentation overview 1–24
double values

as representation of time 6–14
converting for MATLAB 5–17
converting for ModelSim 5–18

DSP Blockset
as optional software 1–18
using for EDA applications 7–5

dspstartup M-file 7–17
duty cycle 7–35

E
EDA (Electronic Design Automation) 1–2
Electronic Design Automation (EDA) 1–2
encoding, Manchester 4–3
End Simulation option, ModelSim 6–26
entities

coding for MATLAB verification 5–3
compiling 4–17
for decoder 4–14
for I/Q convolver 4–11
for state counter 4–15

Index–3



Index

getting port information of 5–13
loading for cosimulation 3–13
loading for cosimulation with

Simulink 7–23
loading for verification 6–12
naming 5–3
programming for MATLAB

verification 5–3
sample definition of 5–5
specifying ports for 5–4
using port information for 5–15
validating 5–15
verifying port direction modes for 5–15

enumerated data types 5–5
conversion of 5–9
converting to 5–18

environment requirements 1–12
environment, cosimulation 1–5
examples 7–5

See also Manchester receiver Simulink
model

hdldaemon function 8–2
Manchester receiver 4–1
MATLAB and ModelSim 2–1 4–1
matlabtb command 9–2
matlabtbeval command 9–7
nomatlabtb command 9–10
setupmodelsim function 8–6
Simulink and ModelSim 3–1
test bench function 5–22
VCD file generation 7–48
vsim function 8–9
vsimmatlab command 9–11
vsimulink command 9–12
wrapverilog command 9–14

F
-falling option 9–2

specifying scheduling options with 6–16

falling-edge clocks
creating for VHDL Cosimulation

blocks 7–35
specifying as scheduling options 6–13
specifying for VHDL Cosimulation

block 7–26
Falling-edge clocks parameter

description of 10–4
specifying block clocks with 7–35

features, product 1–5
field programmable gate arrays (FPGAs) 1–2
files

generating VCD 7–44
VCD 7–45

Fixed-Point Blockset
as optional software 1–18
using for EDA applications 7–5

force command
applying simulation stimuli with 6–21
resetting clocks during cosimulation

with 7–42
FPGAs (field programmable gate arrays) 1–2
functions 8–1

See also MATLAB functions
resolution 7–8

G
Go Until Cursor option, MATLAB 6–22
gold reference designs 1–4

H
hardware definition language (HDL) 1–2
hardware design process 1–3
hardware model design

creating in Simulink 7–5
running and testing in Simulink 7–19

HDL (hardware definition language) 1–2
HDL models 1–3 5–7

Index–4



Index

See also Verilog models; VHDL models;
VHDL models
cosimulation of 1–3
verification of 1–3

hdldaemon function
checking link status of 6–5
configuration restrictions for 1–15
description of 8–2
starting 6–7

help 1–24
Host name parameter

description of 10–4
specifying block communication with 7–33

host names
identifying MATLAB server 6–16
identifying ModelSim server 7–33
identifying server with 1–17

I
I/Q convolver

function for 4–19
script code for 4–34
VHDL code for 4–11

IN direction mode 5–4
verifying 5–15

INOUT direction mode 5–4
verifying 5–15

inphase convolution 4–6
input 5–4

See also input ports
input ports

attaching to signals 7–8
for test bench function 5–13
for VHDL model 5–4
mapping signals to 7–29
simulation time for 7–9
specifying block 7–26

installation 1–11
of Link for ModelSim 1–19

of related software 1–19
int64 values 6–14
INTEGER data type 5–5

conversion of 5–9
converting to 5–18

Internet address 1–17
identifying server with 1–17
specifying 6–16

interprocess communication identifier 6–5
ipc_id status field

checking with hdldaemon function 6–5
description of 8–2

iport parameter 5–13

K
kill option

description of 8–2
shutting down MATLAB server with 2–21

L
latency associated with 7–11
latency, block 7–11
Link for ModelSim

block library 1–5
using to add VHDL to Simulink

with 7–24
blocks 1–15

See also VHDL Cosimulation block
definition of 1–2
installing 1–19
setting up ModelSim for 1–19

link status
checking MATLAB server 6–5
function for acquiring 8–2

links
MATLAB and ModelSim 1–5
Simulink and ModelSim 1–7

Index–5



Index

M
Manchester encoding 4–3
Manchester receiver

background information on 4–5
compiling VHDL code for 4–17
running simulation for 4–40
test bench functions for 4–19
test bench script for 4–30
VHDL code for 4–9

MATLAB
as required software 1–18
in Link for ModelSim environment 1–5
installing 1–19
quitting 6–26
working with ModelSim links to 1–8

MATLAB data types
conversion of 5–9

MATLAB functions 8–1
coding for VHDL verification 5–8
dbstop 6–22
defining 5–13
for decoder 4–23
for I/Q convolver 4–19
for MATLAB and ModelSim tutorial 2–15
for state counter 4–26
hdldaemon 6–7

description of 8–2
modsimrand 1–27
naming 5–13
programming for VHDL verification 5–8
sample of 5–22
scheduling invocation of 6–13
setupmodelsim 7–20

description of 8–6
specifying required parameters for 5–13
test bench 1–5
vsim 7–20

description of 8–9
which 5–28

MATLAB functions,

adding to MATLAB search path 5–28
MATLAB search path 5–28
MATLAB server

checking link status with 6–5
configuration restrictions for 1–15
configurations for 1–15
function for invoking 1–5
identifying in a network

configuration 1–17
starting 6–7
starting for MATLAB and ModelSim

tutorial 2–4
starting from a script 4–31

matlabtb command
description of 9–2
initializing ModelSim for MATLAB

session 6–16
specifying scheduling options with 6–13

matlabtbeval command
description of 9–7
initializing ModelSim for MATLAB

session 6–16
specifying scheduling options with 6–13

-mfunc option
specifying test bench function with 6–16
with matlabtb command 9–2
with matlabtbeval command 9–7

models
compiling VHDL 5–7
debugging VHDL 5–7
for Simulink and ModelSim tutorial 3–6

ModelSim
as required software 1–18
deconfiguring 1–23
handling of signal values for 7–8
in Link for ModelSim environment 1–5
initializing for MATLAB session 6–16
installing 1–19
quitting 6–26
setting up during installation 1–19

Index–6



Index

setting up for MATLAB and ModelSim
tutorial 2–6

setting up for Simulink and ModelSim
tutorial 3–12

simulation time for 7–9
specifying version of 6–10
starting for use with Simulink 7–20
starting from MATLAB 6–10
version of 1–21 to 1–22
working with MATLAB links to 1–8
working with Simulink links to 1–9

ModelSim commands
bp 6–22
force

applying simulation stimuli with 6–21
resetting clocks during cosimulation

with 7–42
matlabtb

description of 9–2
initializing ModelSim with 6–16

matlabtbeval
description of 9–7
initializing ModelSim with 6–16

nomatlabtb 9–10
report simulator state 7–9
restart 6–25
run 6–22
specifying scheduling options with 6–13
vcd2wlf 7–43
vsimmatlab

description of 9–11
loading VHDL entities for verification

with 6–12
vsimulink

description of 9–12
loading VHDL entities for cosimulation

with 7–23
wrapverilog 9–14

ModelSim Editor 2–8

ModelSim running on this computer parameter
description of 10–4
specifying block communication with 7–33

ModelSim setup program
running in command line mode 1–22
running in interactive mode 1–21

modes
communication 1–17

specifying with hdldaemon
function 6–7

of communication 1–8
port direction 5–4 5–15

modsimrand function 1–27
multirate signals 7–10

N
names

for test bench functions 5–13
for VHDL entities 5–3
shared memory communication

channel 6–5
verifying port 5–15

NATURAL data type 5–5
conversion of 5–9
converting to 5–18

network configuration 1–17
network environment 1–5
-nocompile option 9–14
nomatlabtb command 9–10
Number of input ports parameter 10–2

configuring To VCD File block with 7–44
Number of output ports parameter

configuring To VCD File block with 7–44
description of 10–2

numeric data
converting for MATLAB 5–17
converting for ModelSim 5–18

Index–7



Index

O
online help 1–24
oport parameter 5–13
options

for matlabtb command 9–2
for matlabtbeval command 9–7
for vsimulink command 9–12
for wrapverilog command 9–14
kill 8–2
property

with hdldaemon function 8–2
with setupmodelsim function 8–6
with vsim function 8–9

status 8–2
OUT direction mode 5–4

verifying 5–15
output ports

for test bench function 5–13
for VHDL model 5–4
mapping signals to 7–29
simulation time for 7–9
specifying block 7–26

Output sample time parameter
description of 10–4
specifying sample time with 7–29

P
parameters

for To VCD File block 10–2
for VHDL Cosimulation block 10–4
required for test bench functions 5–13

phase, clock 7–35
platform support 1–5

required 1–18
port names

verifying 5–15
Port number or service parameter

description of 10–4
specifying block communication with 7–33

port numbers 1–17
checking 6–5
specifying for MATLAB server 6–7
specifying for ModelSim 6–13
specifying with setupmodelsim

function 1–22
portinfo parameter 5–13
portinfo structure 5–15
ports

getting information about 5–13
specifying direction modes for 5–4
specifying for VHDL entities 5–4
specifying VHDL data types for 5–5
using information about 5–15
verifying data type of 5–15
verifying direction modes for 5–15

Ports tab
configuring block ports with 7–29
description of 10–4

ports, block
mapping signals to 7–29
requirements for 7–26

postprocessing tools 7–43
prerequisite knowledge 1–4
properties

action
description of 8–6
setting up ModelSim with 1–21

for hdldaemon function 8–2
for setupmodelsim function 8–6
for starting MATLAB server 6–7
for starting ModelSim for use with

Simulink 7–20
for vsim function 8–9
socket 8–2
socketsimulink 8–9
startupfile 8–9
tclstart

with setupmodelsim function 8–6
with vsim function 8–9

Index–8



Index

time
description of 8–2

vsimdir
with setupmodelsim function 8–6
with vsim function 8–9

property option
for hdldaemon function 8–2
for setupmodelsim function 8–6
for vsim function 8–9

Q
quadrature convolution 4–6

R
rate converter 7–10
real data

converting for MATLAB 5–17
converting for ModelSim 5–18

REAL data type 5–5
conversion of 5–9
converting to 5–18

real values, as time 6–14
-repeat option 9–2

specifying scheduling options with 6–16
report simulator state ModelSim

command 7–9
requirements

application software 1–18
checking product 1–18
environment 1–12
for VHDL Cosimulation block 7–26
platform 1–18

resolution functions 7–8
resolution limit 5–15
Restart button, Modelsim 6–25
restart ModelSim command 6–25
Restart option, ModelSim 6–25
-rising option 9–2

specifying scheduling options with 6–16
rising-edge clocks

creating for VHDL Cosimulation
blocks 7–35

specifying as scheduling options 6–13
specifying for VHDL Cosimulation

block 7–26
Rising-edge clocks parameter

description of 10–4
specifying block clocks with 7–35

run command 6–22
Run Continue button, ModelSim 6–22
Run option, MATLAB 6–22

S
sample periods 7–5

See also sample times
sample times 7–11

design decisions for 7–5
handling across simulation domains 7–8
specifying for block output ports 7–29

Save and Run option, MATLAB 6–22
scalar data types

conversions of 5–9
VHDL 5–5

scheduling options 6–13
script

ModelSim setup 1–19
test bench 4–30

search path 5–28
sensitivity lists 6–13
-sensitivity option 9–2

specifying scheduling options with 6–16
server activation 8–2
server shutdown 8–2
server, MATLAB

checking link status of MATLAB 6–5
for MATLAB and ModelSim links 1–5
for Simulink and ModelSim links 1–7

Index–9



Index

identifying in a network
configuration 1–17

starting for MATLAB and ModelSim
tutorial 2–4

starting from a script 4–31
starting MATLAB 6–7

set/clear breakpoint button, MATLAB 6–22
Set/Clear Breakpoint option, MATLAB 6–22
setup 1–11
setupmodelsim function

deconfiguring ModelSim with 1–23
description of 8–6
running in command line mode 1–22
running in interactive mode 1–21
starting ModelSim with 7–20
using during installation 1–19
using install option with 1–22

shared memory communication 1–5 1–8
as a configuration option 1–15
for Simulink applications 7–20
specifying for VHDL Cosimulation

blocks 7–33
specifying with hdldaemon function 6–7

Shared memory parameter
description of 10–4
specifying block communication with 7–33

signal pathnames
displaying 7–29
specifying for block clocks 7–35
specifying for block ports 7–29

signals
continuous 7–9
defining ports for 5–4
driven by multiple sources 7–8
exchanging between simulation

domains 7–8
handling across simulation domains 7–8
how Simulink drives 7–8
logging changes to 7–43
logging changes to values of 7–43

mapping to block ports 7–29
multirate 7–10

signed data 5–17
SIGNED data type 5–18
simulation analysis 7–43
simulation time 5–13

guidelines for 7–9
representation of 7–9
scaling of 7–9

simulations
comparing results of 7–43
ending 6–26
loading for MATLAB and ModelSim

tutorial 2–12
logging changes to signal values

during 7–43
Manchester receiver 4–40
quitting 6–26
running for MATLAB and ModelSim

tutorial 2–18
running Simulink and ModelSim

tutorial 3–14
shutting down for MATLAB and ModelSim

tutorial 2–21
shutting down Simulink and ModelSim

tutorial 3–17
simulator resolution limit 5–15
simulators

handling of signal values between 7–8
ModelSim

initializing for MATLAB session 6–16
starting from MATLAB 6–10

Simulink
as optional software 1–18
configuration restrictions for 1–15
configuring for VHDL models 7–17
creating hardware model designs with 7–5
driving cosimulation signals with 7–8
in Link for ModelSim environment 1–5
installing 1–19

Index–10



Index

running and testing hardware model
in 7–19

setting up ModelSim for use with 3–12
simulation time for 7–9
starting ModelSim for use with 7–20
using with ModelSim 7–1
working with ModelSim links to 1–9

Simulink models
adding VHDL models to 7–24
for Simulink and ModelSim tutorial 3–6

sink device
adding to a Simulink model 7–24
specifying block ports for 7–29
specifying clocks for 7–35
specifying communication for 7–33
specifying Tcl commands for 7–37

socket numbers 6–5
See also port numbers

-socket option
specifying TCP/IP socket with 6–16
with matlabtb command 9–2
with matlabtbeval command 9–7
with vsimulink command 9–12

socket port numbers 1–17
as a networking requirement 1–17
checking 6–5
specifying for TCP/IP link 7–20
specifying for VHDL Cosimulation

blocks 7–33
specifying with -socket option 6–16
specifying with setupmodelsim

function 1–22
socket property

description of 8–2
specifying with hdldaemon function 6–7

sockets 1–8
See also TCP/IP socket communication

socketsimulink property
description of 8–9

specifying TCP/IP socket for ModelSim
with 7–20

software
installing 1–19
optional 1–18
required 1–18

Solaris 1–5
as a required platform 1–18

source device
adding to a Simulink model 7–24
specifying block ports for 7–29
specifying clocks for 7–35
specifying communication for 7–33
specifying Tcl commands for 7–37

standard logic data 5–17
standard logic vectors

converting for MATLAB 5–17
converting for ModelSim 5–18

start time 7–9
startup commands, ModelSim 6–10
startupfile property

description of 8–9
specifying DO file for ModelSim startup

with 7–20
specifying with vsim function 6–10

state counter
function for 4–26
script code for 4–36
VHDL code for 4–15

status option
checking value of 6–5
description of 8–2

status, link 6–5
STD_LOGIC data type 5–5

conversion of 5–9
converting to 5–18

STD_LOGIC_VECTOR data type 5–5
conversion of 5–9
converting for MATLAB 5–17
converting to 5–18

Index–11



Index

STD_ULOGIC data type 5–5
conversion of 5–9
converting to 5–18

STD_ULOGIC_VECTOR data type 5–5
conversion of 5–9
converting for MATLAB 5–17
converting to 5–18

Step button
in MATLAB 6–22
in ModelSim 6–22

Step option, ModelSim 6–22
Step Over button, ModelSim 6–22
Step-In button, MATLAB 6–22
Step-Out button, MATLAB 6–22
Step-Over option, ModelSim 6–22
stimuli, block internal 7–35
stop time 7–9
strings, time value 6–14
subtypes, VHDL 5–5

T
Tcl commands

configuring for block simulation 7–37
configuring ModelSim to start with 7–20
requirements for VHDL Cosimulation

blocks 7–26
specifying for VHDL Cosimulation

block 7–26
specifying with setupmodelsim

function 1–22
specifying with vsim function 6–10

Tcl tab
description of 10–4

tclstart property
specifying with setupmodelsim

function 7–20
specifying with vsim function 6–10
with setupmodelsim function 8–6
with vsim function 8–9

TCP/IP networking protocol 1–8
See also TCP/IP socket communication
as a networking requirement 1–17

TCP/IP socket communication
as a communication option 1–15
feature 1–5
for Simulink applications 7–20
mode 1–8
specifying with hdldaemon function 6–7

TCP/IP socket ports 1–17
specifying for VHDL Cosimulation

blocks 7–33
specifying with -socket option 6–16

test bench functions
adding to MATLAB search path 5–28
coding for VHDL verification 5–8
defining 5–13
for MATLAB and ModelSim tutorial 2–15
naming 5–13
programming for VHDL verification

overview of 5–8
sample of 5–22
scheduling invocation of 6–13
specifying required parameters for 5–13

test bench script
for decoder 4–31
for I/Q convolver 4–34
for state counter 4–36
Manchester receiver 4–30
starting MATLAB server from 4–31

test bench sessions
controlling 6–1 6–3
logging changes to signal values

during 7–43
monitoring 6–22
restarting 6–25
running 6–22
starting 6–1 6–3
stopping 6–26

test benches 1–5

Index–12



Index

See also test bench functions
time 7–9

See also time values
callback 5–13
delta 7–11
simulation 5–13

guidelines for 7–9
representation of 7–9

TIME data type 5–5
conversion of 5–9
converting to 5–18

time property
description of 8–2
setting return time type with 6–7

time scale, VCD file 7–45
time units 6–16
time values 6–16

specifying as scheduling options 6–13
specifying with hdldaemon function 6–7

timing errors 7–9
tnext parameter 5–13

controlling callback timing with 6–14
specifying as scheduling options 6–13
time representations for 6–14

tnow parameter 5–13
To VCD File block 1–5

configuring 7–44
description of 10–2
generating VCD files with 7–44
uses of 1–9

tools, postprocessing 7–43
tscale parameter 5–15
tutorial files 2–3
tutorials 1–25

Manchester receiver 4–1
MATLAB and ModelSim 2–1
Simulink and ModelSim 3–1

types
conversions of 5–9
converting for MATLAB 5–17

converting for ModelSim 5–18
VHDL port 5–5

U
unsigned data 5–17
UNSIGNED data type 5–18
unsupported data types 5–5
users, Link for ModelSim 1–4

V
value change dump (VCD) files 7–43

See also VCD files
VCD file name parameter

configuring To VCD File block with 7–44
description of 10–2

VCD files 1–5
example of generating 7–48
format of 7–45
generating 7–44
using 7–43

vcd2wlf command 7–43
vectors

converting for MATLAB 5–17
converting to 5–18

verification
coding functions for 5–8

overview of 5–8
hardware model 1–5

verification sessions
logging changes to signal values

during 7–43
monitoring 6–22
restarting 6–25
running 6–22
stopping 6–26

VHDL code
compiling for MATLAB and ModelSim

tutorial 2–11

Index–13



Index

compiling for Simulink and ModelSim
tutorial 3–4

for decoder 4–14
for I/Q convolver 4–11
for Manchester receiver 4–9

compiling 4–17
for MATLAB and ModelSim tutorial 2–8
for Simulink and ModelSim tutorial 3–2
for state counter 4–15

VHDL Cosimulation block
adding to a Simulink model 7–24
applying configuration settings for 7–40
black boxes representing 7–5
configuration requirements for 1–15
configuring 7–26
configuring clocks for 7–35
configuring communication for 7–33
configuring ports for 7–29
configuring Tcl commands for 7–37
description of 10–4
design decisions for 7–5
handling of signal values for 7–8
in Link for ModelSim environment 1–5
opening Block Parameters dialog for 7–28
scaling simulation time for 7–9
valid configurations for 1–16

VHDL data types 1–5
See also data types
conversion of 5–9

VHDL design 7–3
VHDL entities

coding for MATLAB verification 5–3
for Simulink and ModelSim tutorial

loading for cosimulation 3–13
getting port information of 5–13
loading for cosimulation with

Simulink 7–23
loading for verification 6–12
naming 5–3

programming for MATLAB
verification 5–3

sample definition of 5–5
specifying ports for 5–4
using port information for 5–15
validating 5–15
verifying port direction modes for 5–15

VHDL models 1–3
See also HDL models
adding to Simulink models 7–24
compiling 5–7
configuring Simulink for 7–17
cosimulation 1–3
debugging 5–7
porting 7–43
running in Simulink 7–42
testing in Simulink 7–42
verifying 1–3

VHDL Sink block 7–24
See also VHDL Cosimulation block

VHDL Source block 7–24
See also VHDL Cosimulation block

visualization
coding functions for 5–8

overview of 5–8
vsim function

description of 8–9
starting ModelSim with 6–10 7–20

vsimdir property
specifying with setupmodelsim

function 7–20
specifying with vsim function 6–10
with setupmodelsim function 8–6
with vsim function 8–9

vsimmatlab command
description of 9–11
loading VHDL entities for verification

with 6–12
vsimulink command

description of 9–12

Index–14



Index

loading VHDL entities for cosimulation
with 7–23

W
Wave window, ModelSim 7–29
waveform files 7–43
which function 5–28
Windows 2000 1–5

as a required platform 1–18
Windows XP 1–5

as a required platform 1–18
WLF files 7–43
wrapverilog command 9–14

Z
zero-order hold 7–9

Index–15


	toc
	Getting Started
	What Is the Link for ModelSim?
	Typical Applications
	Expected Users
	Key Features 
	The Cosimulation Environment
	MATLAB and ModelSim Links
	Simulink and ModelSim Links

	Modes of Communication
	Working with MATLAB and ModelSim
	Working with Simulink and ModelSim

	Installation and Setup
	What Are Your Environment Requirements?
	Deciding on a Configuration
	MATLAB
	Simulink

	Identifying a Server in a Network Configuration
	Choosing TCP/IP Socket Ports
	Checking Product Requirements
	Installing Related Application Software
	Installing Link for ModelSim
	Setting Up ModelSim for Use with the Link for ModelSim
	Running the Setup Program in Interactive Mode
	Running the Setup Program in Command-Line Mode
	Removing Link for ModelSim Configuration Information from ModelS


	Getting Help with the Link for ModelSim
	Documentation Overview
	Online Help
	Demos and Tutorials

	Running the ModelSim and MATLAB Random Number Generator Demo
	Running the Simulink and ModelSim Manchester Receiver Demo

	MATLAB and ModelSim Tutorial
	Setting Up Tutorial Files
	Starting the MATLAB Server
	Setting Up ModelSim 
	Developing the VHDL Code
	Compiling the VHDL File
	Loading the Simulation
	Developing the MATLAB Function
	Running the Simulation
	Shutting Down the Simulation

	Simulink and ModelSim Tutorial 
	Developing the VHDL Code
	Compiling the VHDL File
	Creating the Simulink Model
	Setting Up ModelSim for Use with Simulink
	Loading Instances of the VHDL Entity for Cosimulation with Simul
	Running the Simulation
	Shutting Down the Simulation

	MATLAB and ModelSim Manchester Receiver Tutorial
	Background on Manchester Encoding
	The Encoding
	The Receiver
	Decoding with Inphase and Quadrature Convolution

	Setting Up Tutorial Files
	Developing the Manchester Receiver VHDL Code
	VHDL Code for the I/Q Convolver
	VHDL Code for the Decoder 
	VHDL Code for the State Counter

	Compiling the Manchester Receiver VHDL Files
	Developing the Manchester Receiver MATLAB Functions
	MATLAB Function for the I/Q Convolver
	MATLAB Function for the Decoder
	MATLAB Function for the State Counter

	Creating a Manchester Receiver Test Bench Script
	Documenting the Script
	Starting the MATLAB Server from the Test Script
	Writing Script Code for the Decoder Test 
	Writing Script Code for the I/Q Convolver Test
	Writing Script Code for the State Counter Test

	Running the Manchester Receiver Simulation

	Coding a Link for ModelSim MATLAB Application
	Overview
	Coding VHDL Entities for MATLAB Verification
	Overview of the Steps for Coding VHDL Entities
	Choosing an Entity Name
	Specifying Ports for the Entity
	Specifying Port Direction Modes
	Specifying Port Data Types
	Sample VHDL Entity Definition

	Compiling and Debugging the VHDL Model
	Coding a MATLAB Test Bench Function
	Overview of the Steps for Coding a MATLAB Test Bench Function
	Data Type Conversions
	Naming a MATLAB Test Bench Function
	Setting up Expected Parameters
	Gaining Access to and Applying Port Information
	Converting Data for Manipulation
	Converting Data for Return to ModelSim
	Sample MATLAB Test Bench Function

	Placing a MATLAB Test Bench Function on the MATLAB Search Path

	Starting and Controlling MATLAB Test Bench Sessions
	Overview
	Checking the MATLAB Server's Link Status
	Starting the MATLAB Server
	Starting ModelSim for Use with MATLAB
	Loading a VHDL Entity for Verification
	Deciding on Test Bench Scheduling Options
	Controlling Callback Timing from a MATLAB Test Bench Function
	Initializing the Simulator for a MATLAB Test Bench Session
	Applying Stimuli with the ModelSim force Command
	Running and Monitoring a Test Bench Session
	Restarting a Test Bench Session
	Stopping a Test Bench Session 

	Modeling and Verifying a VHDL Design with Simulink
	Overview
	Creating a Hardware Model Design in Simulink
	Handling of Signal Values Across Simulation Domains
	How Simulink Drives Cosimulation Signals
	Representation of Simulation Time
	Handling of Multirate Signals
	Block Simulation Latency

	Configuring Simulink for VHDL Models
	Running and Testing a Hardware Model in Simulink
	Starting ModelSim for Use with Simulink 
	Loading a VHDL Entity for Cosimulation
	Adding the VHDL Representation of a Model Component into a Simul
	Configuring a VHDL Cosimulation Block
	What Are Your VHDL Cosimulation Block Requirements?
	Opening the Block Parameters Dialog
	Mapping VHDL Signals to Block Ports
	Configuring the Communication Link
	Creating Optional Clocks
	Specifying Before and After Simulation Tcl Commands
	Applying Your Block Parameters Configuration Settings and Closin

	Running and Testing a Cosimulation Model in Simulink
	Using a Value Change Dump File for Design Verification
	Generating a VCD File
	VCD File Format
	A Sample VCD File Application 


	MATLAB Functions — Alphabetical List
	ModelSim Commands — Alphabetical List
	Simulink Blocks — Alphabetical List

	tables
	Environment Requirements Checklist
	VHDL-to-MATLAB Data Type Conversions
	VHDL Port Information
	Required Data Conversions
	Conversions for ModelSim
	Example Port Definitions
	Time Representations for tnext Parameter
	Simulation Scheduling Options
	VHDL Cosimulation Block Requirements Checklist


